Intrinsic volumes and polar sets in spherical space

For a convex body of given volume in spherical space, the total invariant measure of hitting great subspheres becomes minimal, equivalently the volume of the polar body becomes maximal, if and only if the body is a spherical cap. This result can be considered as a spherical counterpart of two Euclidean inequalities, the Urysohn inequality connecting mean width and volume, and the Blaschke-Santalo inequality for the volumes of polar convex bodies. Two proofs are given; the first one can be adapted to hyperbolic space. MSC 2000: 52A40 (primary); 52A55, 52A22 (secondary)

[1]  C. B. Allendoerfer,et al.  The Gauss-Bonnet theorem for Riemannian polyhedra , 1943 .

[2]  G. Herglotz Über die steinersche formel für parallelflächen , 1943 .

[3]  C. B. Allendoerfer Steiner's formulae on a general $S^{n + 1}$ , 1948 .

[4]  E. Schmidt Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie. I , 1948 .

[5]  L. Santaló On parallel hypersurfaces in the elliptic and hyperbolic n-dimensional space , 1950 .

[6]  V. Wolontis Properties of Conformal Invariants , 1952 .

[7]  H. Hadwiger Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .

[8]  Luis Antonio Santaló Sors Sobre la fórmula de Gauss-Bonnet para poliedros en espacios de curvatura constante , 1962 .

[9]  Helmut Groemer On the Euler characteristic in spaces with a separability property , 1974 .

[10]  P Mcmullen,et al.  Non-linear angle-sum relations for polyhedral cones and polytopes , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  L. Santaló Integral geometry and geometric probability , 1976 .

[12]  T. Figiel,et al.  The dimension of almost spherical sections of convex bodies , 1976 .

[13]  Rolf Schneider,et al.  Problems in Geometric Convexity , 1979 .

[14]  Peter McMullen,et al.  Valuations on convex bodies , 1983 .

[15]  Peter Kohlmann,et al.  Curvature measures and Steiner formulae in space forms , 1991 .

[16]  P. McMullen Valuations and Dissections , 1993 .

[17]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[18]  Daniel A. Klain A short proof of Hadwiger's characterization theorem , 1995 .

[19]  Daniel A. Klain,et al.  Introduction to Geometric Probability , 1997 .

[20]  Alexander Yu. Solynin,et al.  An approach to symmetrization via polarization , 1999 .

[21]  Uriel Feige,et al.  On the optimality of the random hyperplane rounding technique for MAX CUT , 2002, Random Struct. Algorithms.

[22]  G. Schechtman Chapter 37 - Concentration, Results and Applications , 2003 .

[23]  Two-point symmetrization and convexity , 2004 .