Hyperbolic Basis Functions for Time-Transient Analysis of Eddy Currents in Conductive and Magnetic Thin Sheets

This article presents a new time-domain finite-element approach for modeling thin sheets with hyperbolic basis functions derived from the well-known steady-state solution of the linear flux diffusion equation. The combination of solutions at different operating frequencies permits the representation of the time evolution of field quantities in the magnetic field formulation. This approach is here applied to solve a planar shielding problem in harmonic and time-dependent simulations for materials with either linear or nonlinear characteristics. Local and global quantities show good agreement with the reference solutions obtained by the standard finite-element method (FEM) on a complete and representative discretization of the region exposed to a time-varying magnetic field.

[1]  C. Geuzaine,et al.  Finite-Element Formulations for Systems With High-Temperature Superconductors , 2020, IEEE Transactions on Applied Superconductivity.

[2]  Johan Gyselinck,et al.  Finite-Element Homogenization of Laminated Iron Cores With Inclusion of Net Circulating Currents Due to Imperfect Insulation , 2016, IEEE Transactions on Magnetics.

[3]  Christophe Geuzaine,et al.  Dual formulations for the modeling of thin electromagnetic shells using edge elements , 2000 .

[4]  Christophe Geuzaine,et al.  GetDP: a general environment for the treatment of discrete problems , 1997 .

[5]  Christophe Guérin,et al.  Détermination des pertes par courants de Foucault dans les cuves de transformateurs. Modélisation de régions minces et prise en compte de la saturation des matériaux magnétiques en régime harmonique , 1994 .

[6]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[7]  O. Bottauscio,et al.  Transient analysis of thin layers for the magnetic field shielding , 2006, IEEE Transactions on Magnetics.

[8]  Christophe Geuzaine,et al.  Optimal parametrizations for surface remeshing , 2014, Engineering with Computers.

[9]  M. Chiampi,et al.  Numerical analysis of magnetic shielding efficiency of multilayered screens , 2004, IEEE Transactions on Magnetics.

[10]  C. Geuzaine,et al.  Nonlinear Time-Domain Finite-Element Modeling of Thin Electromagnetic Shells , 2009, IEEE Transactions on Magnetics.

[11]  Hajime Igarashi,et al.  A three dimensional analysis of magnetic fields around a thin magnetic conductive layer using vector potential , 1998 .

[12]  Min Zhang,et al.  An efficient 3D finite element method model based on the T–A formulation for superconducting coated conductors , 2017 .

[13]  On finite element implementation of impedance boundary conditions , 1994 .

[14]  H. Knoepfel Magnetic Fields: A Comprehensive Theoretical Treatise for Practical Use , 2000 .

[15]  Hajime Igarashi,et al.  Impedance boundary condition for vector potentials on thin layers and its application to integral equations , 1998 .

[16]  Surface-Impedance Boundary Conditions in Time-Domain Finite-Element Calculations Using the Magnetic-Vector-Potential Formulation , 2009, IEEE Transactions on Magnetics.

[17]  J. Gyselinck,et al.  A nonlinear time-domain homogenization technique for laminated iron cores in three-dimensional finite-element models , 2006, IEEE Transactions on Magnetics.

[18]  Francesco Grilli,et al.  Real-time simulation of large-scale HTS systems: multi-scale and homogeneous models using the T–A formulation , 2018, Superconductor Science and Technology.

[19]  Christophe Geuzaine,et al.  h- and a-formulations for the time-domain modelling of thin electromagnetic shells , 2008 .

[20]  C. Geuzaine,et al.  Time-Domain Finite-Element Modeling of Thin Electromagnetic Shells , 2008, IEEE Transactions on Magnetics.

[21]  Brandt,et al.  Superconductors of finite thickness in a perpendicular magnetic field: Strips and slabs. , 1996, Physical review. B, Condensed matter.

[22]  L. Krahenbuhl,et al.  Thin Layers in Electrical Engineering. Example of Shell models in Analysing Eddy-Currents by Boundary and Finite Element Methods , 1992, Digest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation.

[24]  Min Zhang,et al.  A finite element model for simulating second generation high temperature superconducting coils/stacks with large number of turns , 2017 .

[25]  J. Gyselinck,et al.  A time-domain homogenization technique for laminated iron cores in 3-D finite-element models , 2004, IEEE Transactions on Magnetics.

[26]  Isaak D. Mayergoyz,et al.  On calculation of 3-D eddy currents in conducting and magnetic shells , 1995 .

[27]  K. Preis,et al.  A finite element formulation for eddy current carrying ferromagnetic thin sheets , 1996 .