Metric-based resolvability of polycyclic aromatic hydrocarbons

Benzene or benzenoid series of structures are among the most attractive chemical structures. Polycyclic aromatic hydrocarbons (PAH) are one of the complex families of benzenoids. PAH are everyday combustion products and implemented in many usages, especially in astrochemistry, as a candidate of interstellar species. In chemical graph theory, each chemical structure can be represented as a graph, where atoms alternated to vertices and edges become bonds. Resolvability parameters of a graph are the recent advanced topic in which the entire structure is shaped such a way to get each atom’s unique position. This article studies some resolvability parameters of polycyclic aromatic hydrocarbons, such as metric dimension, edge metric dimension, and generalizations. Getting the entire structure into a novel shape obtained through resolvability parameters helps in understanding and working with the structure.

[1]  Sakander Hayat,et al.  On the fault-tolerant metric dimension of certain interconnection networks , 2018, Journal of Applied Mathematics and Computing.

[2]  Bharati Rajan,et al.  On minimum metric dimension of honeycomb networks , 2008, J. Discrete Algorithms.

[3]  M. Farahani Computing Eccentricity Connectivity Polynomial of Circumcoronene Series of Benzenoid Hk by Ring-Cut Method , 2013 .

[4]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[5]  Rashid Farooq,et al.  On partition dimension of fullerene graphs , 2018 .

[6]  Vasek Chvátal,et al.  Mastermind , 1983, Comb..

[7]  M. Farahani Zagreb Indices and Zagreb Polynomials of Polycyclic Aromatic Hydrocarbons PAHs , 2013 .

[8]  Edy Tri Baskoro,et al.  All graphs of order n ≥ 11 and diameter 2 with partition dimension n − 3 , 2020, Heliyon.

[9]  Thomas Erlebach,et al.  Network Discovery and Verification , 2005, IEEE Journal on Selected Areas in Communications.

[10]  Attila Szolnoki,et al.  Evolutionary dynamics of group interactions on structured populations: a review , 2013, Journal of The Royal Society Interface.

[11]  Ali Ahmad,et al.  Barycentric Subdivision of Cayley Graphs With Constant Edge Metric Dimension , 2020, IEEE Access.

[12]  Harry R. Lewis,et al.  ΠGarey Michael R. and Johnson David S.. Computers and intractability. A guide to the theory of NP-completeness . W. H. Freeman and Company, San Francisco 1979, x + 338 pp. , 1983 .

[13]  Ioan Tomescu,et al.  Metric bases in digital geometry , 1984, Comput. Vis. Graph. Image Process..

[14]  Xiaogang Liu,et al.  Fault-tolerant edge metric dimension of certain families of graphs , 2021, AIMS Mathematics.

[15]  Gary Chartrand,et al.  The partition dimension of a graph , 2000 .

[16]  S. Stein,et al.  .pi.-Electron properties of large condensed polyaromatic hydrocarbons , 1987 .

[17]  Sakander Hayat,et al.  Fault-Tolerant Resolvability and Extremal Structures of Graphs , 2019, Mathematics.

[18]  Ismael González Yero Vertices, edges, distances and metric dimension in graphs , 2016, Electron. Notes Discret. Math..

[19]  F. Simon Raj,et al.  ON THE METRIC DIMENSION OF SILICATE STARS , 2015 .

[20]  M. Nadeem,et al.  The locating number of hexagonal Möbius ladder network , 2020 .

[21]  András Sebö,et al.  On Metric Generators of Graphs , 2004, Math. Oper. Res..

[22]  Sakander Hayat,et al.  On the fault-tolerant metric dimension of convex polytopes , 2018, Appl. Math. Comput..

[23]  Shin Min Kang,et al.  Computing Metric Dimension and Metric Basis of 2D Lattice of Alpha-Boron Nanotubes , 2018, Symmetry.

[24]  Azriel Rosenfeld,et al.  Landmarks in Graphs , 1996, Discret. Appl. Math..

[25]  M. Farahani Some Connectivity Indices of Polycyclic Aromatic Hydrocarbons (PAHs) , 2013 .

[26]  Mark E. Johnson Browsable structure-activity datasets , 1999 .

[27]  Attila Szolnoki,et al.  Coevolutionary Games - A Mini Review , 2009, Biosyst..

[28]  Gary Chartrand,et al.  Resolvability in graphs and the metric dimension of a graph , 2000, Discret. Appl. Math..

[30]  H. S. Shapiro,et al.  A Combinatory Detection Problem , 1963 .

[31]  Mathias Hauptmann,et al.  Approximation complexity of Metric Dimension problem , 2012, J. Discrete Algorithms.

[32]  Yuezhong Zhang,et al.  On the edge metric dimension of convex polytopes and its related graphs , 2020, J. Comb. Optim..

[33]  Yu-Ming Chu,et al.  On Sharp Bounds on Partition Dimension of Convex Polytopes , 2020, IEEE Access.

[35]  K. Müllen,et al.  Characterization of Large Synthetic Polycyclic Aromatic Hydrocarbons by MALDI- and LD-TOF Mass Spectrometry , 2001 .

[36]  M. Johnson,et al.  Structure-activity maps for visualizing the graph variables arising in drug design. , 1993, Journal of biopharmaceutical statistics.

[37]  David R. Wood,et al.  On the Metric Dimension of Cartesian Products of Graphs , 2005, SIAM J. Discret. Math..

[38]  Ismael González Yero,et al.  Uniquely identifying the edges of a graph: The edge metric dimension , 2016, Discret. Appl. Math..

[39]  M. Farahani,et al.  Computing Eccentric Version of Second Zagreb Index of Polycyclic Aromatic Hydrocarbons (PAHk) , 2016 .