EXISTENCE OF GROUND STATE SOLUTIONS FOR A CHOQUARD DOUBLE PHASE PROBLEM

In this paper we study quasilinear elliptic equations driven by the double phase operator involving a Choquard term of the form −Lp,q(u) + |u|p−2u+ a(x)|u|q−2u = (∫ RN F (y, u) |x− y|μ dy ) f(x, u) in R , where Lp,q is the double phase operator given by Lp,q(u) := div ( |∇u|p−2∇u+ a(x)|∇u|q−2∇u ) , u ∈ W 1,H(RN ), 0 < μ < N , 1 < p < N , p < q < p + αp N , 0 ≤ a(·) ∈ C0,α(RN ) with α ∈ (0, 1] and f : RN × R → R is a continuous function that satisfies a subcritical growth. Based on the Hardy-Littlewood-Sobolev inequality, the Nehari manifold and variational tools, we prove the existence of ground state solutions of such problems under different assumptions on the data.

[1]  M. Ragusa,et al.  Nonnegative solution of a class of double phase problems with logarithmic nonlinearity , 2022, Boundary Value Problems.

[2]  P. Pucci,et al.  Existence and multiplicity results for a class of Kirchhoff–Choquard equations with a generalized sign-changing potential , 2022, Rendiconti Lincei - Matematica e Applicazioni.

[3]  Patrick Winkert,et al.  Combined effects of singular and superlinear nonlinearities in singular double phase problems in RN , 2022, Journal of Mathematical Analysis and Applications.

[4]  Robert Stegliński,et al.  Infinitely many solutions for double phase problem with unbounded potential in RN , 2022, Nonlinear Analysis.

[5]  P. Pucci,et al.  Quasilinear double phase problems in the whole space via perturbation methods , 2022, Advances in Differential Equations.

[6]  Reshmi Biswas,et al.  On a class of Kirchhoff-Choquard equations involving variable-order fractional $p(\cdot)$-Laplacian and without Ambrosetti-Rabinowitz type condition , 2021, Topological Methods in Nonlinear Analysis.

[7]  Wei Sun,et al.  Existence of least energy nodal solutions for a double-phase problem with nonlocal nonlinearity , 2021, Applicable Analysis.

[8]  Omar Benslimane,et al.  Existence Results for Double Phase Problem in Sobolev–Orlicz Spaces with Variable Exponents in Complete Manifold , 2021, Mediterranean Journal of Mathematics.

[9]  Patrizia Pucci,et al.  Existence for fractional (p,q) systems with critical and Hardy terms in RN , 2021 .

[10]  P. Harjulehto,et al.  A new class of double phase variable exponent problems: Existence and uniqueness , 2021, Journal of Differential Equations.

[11]  A. Bahrouni,et al.  Existence and multiplicity results for p(⋅)&q(⋅) fractional Choquard problems with variable order , 2020, Complex Variables and Elliptic Equations.

[12]  Guowei Dai,et al.  Multiplicity results for double phase problems in RN , 2020, Journal of Mathematical Physics.

[13]  P. Pucci,et al.  Multiple solutions for critical Choquard-Kirchhoff type equations , 2020 .

[14]  Giuseppe Mingione,et al.  Lipschitz Bounds and Nonautonomous Integrals , 2020, Archive for Rational Mechanics and Analysis.

[15]  P. Pucci,et al.  Semiclassical ground state solutions for critical Schrödinger-Poisson systems with lower perturbations , 2020 .

[16]  Liyan Wang,et al.  Ground state sign-changing solutions for a class of double-phase problem in bounded domains , 2020, Boundary Value Problems.

[17]  J. Giacomoni,et al.  Polyharmonic Kirchhoff problems involving exponential non-linearity of Choquard type with singular weights , 2019, 1911.03546.

[18]  Vicentiu D. Rădulescu,et al.  A critical fractional Choquard–Kirchhoff problem with magnetic field , 2019, Communications in Contemporary Mathematics.

[19]  Guowei Dai,et al.  Three ground state solutions for double phase problem , 2018, Journal of Mathematical Physics.

[20]  J. Giacomoni,et al.  n-Kirchhoff–Choquard equations with exponential nonlinearity , 2018, Nonlinear Analysis.

[21]  G. Mingione,et al.  Regularity for general functionals with double phase , 2017, 1708.09147.

[22]  C. O. Alves,et al.  Ground state solution for a class of indefinite variational problems with critical growth , 2017, Journal of Differential Equations.

[23]  Minbo Yang,et al.  Singularly perturbed critical Choquard equations , 2016, 1611.01712.

[24]  C. O. Alves,et al.  A Hardy–Littlewood–Sobolev-Type Inequality for Variable Exponents and Applications to Quasilinear Choquard Equations Involving Variable Exponent , 2016, Mediterranean Journal of Mathematics.

[25]  Jean Van Schaftingen,et al.  A guide to the Choquard equation , 2016, 1606.02158.

[26]  K. Sreenadh,et al.  Fractional Choquard equation with critical nonlinearities , 2016, 1605.06805.

[27]  G. Mingione,et al.  Harnack inequalities for double phase functionals , 2015 .

[28]  Jean Van Schaftingen,et al.  Nodal solutions for the Choquard equation , 2015, 1503.06031.

[29]  G. Mingione,et al.  Bounded Minimisers of Double Phase Variational Integrals , 2015 .

[30]  Minbo Yang,et al.  Existence of semiclassical ground state solutions for a generalized Choquard equation , 2014 .

[31]  Minbo Yang,et al.  Multiplicity and concentration of solutions for a quasilinear Choquard equation , 2014 .

[32]  Jean Van Schaftingen,et al.  Groundstates of nonlinear Choquard equations: Hardy–Littlewood–Sobolev critical exponent , 2014, 1403.7414.

[33]  Jean Van Schaftingen,et al.  Existence of groundstates for a class of nonlinear Choquard equations , 2012, 1212.2027.

[34]  Jean Van Schaftingen,et al.  Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics , 2012, 1205.6286.

[35]  S. Secchi,et al.  Multiple solutions to a magnetic nonlinear Choquard equation , 2011, 1109.1386.

[36]  V. Zhikov On variational problems and nonlinear elliptic equations with nonstandard growth conditions , 2011 .

[37]  Lin Zhao,et al.  Classification of Positive Solitary Solutions of the Nonlinear Choquard Equation , 2010 .

[38]  Irene M. Moroz,et al.  Spherically symmetric solutions of the Schrodinger-Newton equations , 1998 .

[39]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[40]  Jan H. Chabrowski,et al.  Variational methods for potential operator equations : with applications to nonlinear elliptic equations , 1997 .

[41]  Paolo Marcellini Regularity and existence of solutions of elliptic equations with p,q-growth conditions , 1991 .

[42]  Paolo Marcellini Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions , 1989 .

[43]  V. Zhikov,et al.  AVERAGING OF FUNCTIONALS OF THE CALCULUS OF VARIATIONS AND ELASTICITY THEORY , 1987 .

[44]  Pierre-Louis Lions,et al.  The concentration-compactness principle in the Calculus of Variations , 1985 .

[45]  P. Lions,et al.  The Choquard equation and related questions , 1980 .

[46]  E. Lieb Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation , 1977 .

[47]  S. I. Pekar,et al.  Untersuchungen über die Elektronentheorie der Kristalle , 1954 .

[48]  Paolo Marcellini,et al.  Local boundedness of weak solutions to elliptic equations with $ p, q- $growth , 2023, Mathematics in Engineering.

[49]  Phuong Le Liouville Results for Double Phase Problems in R N , 2022 .

[50]  P. Hästö,et al.  Orlicz Spaces and Generalized Orlicz Spaces , 2019, Lecture Notes in Mathematics.

[51]  G. Mingione,et al.  Non-autonomous functionals, borderline cases and related function classes , 2016 .

[52]  iuseppe,et al.  Regularity for double phase variational problems , 2014 .

[53]  Shibo Liu On ground states of superlinear p-Laplacian equations in RN , 2010 .

[54]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[55]  Louis Jeanjean,et al.  On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on ℝN , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[56]  Zhikov On Lavrentiev's Phenomenon. , 1995 .

[57]  Jacques Simon,et al.  Regularite de la solution d’une equation non lineaire dans ℝN , 1978 .