Accurate Time Discretization Schemes for Computing Nonstationary Incompressible Fluid Flow

[1]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[2]  Rolf Rannacher,et al.  Implicit Time-Discretization of the Nonstationary Incompressible Navier-Stokes Equations , 1995 .

[3]  Rolf Rannacher,et al.  On the Numerical Solution of the Incompressible Navier‐Stokes Equations , 1993 .

[4]  R. Glowinski,et al.  Numerical methods for the navier-stokes equations. Applications to the simulation of compressible and incompressible viscous flows , 1987 .

[5]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[6]  Jie Shen,et al.  On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations , 1992 .

[7]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[8]  Stefan Turek,et al.  Tools for simulating non‐stationary incompressible flow via discretely divergence‐free finite element models , 1994 .

[9]  Steffen Müller-Urbaniak,et al.  Eine Analyse des Zwischenschritt-Theta-Verfahrens zur Lösung der instationären Navier-Stokes-Gleichungen , 1993 .

[10]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.