Material parameters of InGaAsP and InAlGaAs systems for use in quantum well structures at low and room temperatures

Abstract The set of material parameters for quantum well structures is of immense importance because of its usage in the development of theories, extraction of experimental data, and the proper design of devices. In particular, the (Al,In)GaAs/GaAs, InGaAs/InP and (In,Ga)AlAs/InGaAs quantum well systems have drawn a lot of attention. They form the center core of materials used for fundamental basic research and device applications. Despite the presence of some review articles and reference books, there is a lack of clear reference on the accurate determination of the material parameters for quantum wells. This review aims to provide a comprehensive and systematic set of material parameters for the above quantum well systems grown on (1 0 0) substrates at two different temperatures, below 10 K and at around 300 K. The parameters are compared against experimental data from various fabrication sources, measurement techniques, and quantum well structures. The values presented here serve as an accurate and up to date source of reference.

[1]  L. Hrivnák Simple calculations of energy levels in quantum wells of lattice‐matched semiconductors with nonparabolic bands , 1992 .

[2]  T. Chong,et al.  Considerations for polarization insensitive optical switching and modulation using strained InGaAs/InAlAs quantum well structure , 1991, IEEE Photonics Technology Letters.

[3]  J. R. Stevenson,et al.  Reflectivity measurements of coupled collective cyclotron excitation-longitudinal optical phonon modes in polar semiconductors , 1968 .

[4]  P. Bhattacharya,et al.  Molecular beam epitaxial growth and photoluminescence of near‐ideal GaAs‐AlxGa1−xAs single quantum wells , 1985 .

[5]  W. Powazinik,et al.  Accurate electron probe determination of aluminum composition in (Al, Ga)As and correlation with the photoluminescence peak , 1985 .

[6]  Pseudomorphic GaAs/InGaAs single quantum wells by atmospheric pressure organometallic chemical vapor deposition , 1988 .

[7]  Carrier lifetimes in strained InGaAs/(Al)GaAs multiple quantum wells , 1993 .

[8]  Chang,et al.  New evidence of extensive valence-band mixing in GaAs quantum wells through excitation photoluminescence studies. , 1985, Physical review. B, Condensed matter.

[9]  R. M. Kolbas,et al.  Optical characterization of pseudomorphic InxGa1−xAs–GaAs single‐quantum‐well heterostructures , 1986 .

[10]  Karl Hess,et al.  The dynamics of electron‐hole collection in quantum well heterostructures , 1982 .

[11]  P. Rochon,et al.  Photovoltaic effect and interband magneto-optical transitions in InP , 1975 .

[12]  J. S. Blakemore Semiconducting and other major properties of gallium arsenide , 1982 .

[13]  E. Adachi Energy Band Parameters of InAs at Various Temperatures , 1968 .

[14]  S. J. Bass,et al.  Optical properties of InGaAs‐InP single quantum wells grown by atmospheric pressure metalorganic chemical vapor deposition , 1986 .

[15]  S. Adachi GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .

[16]  D. Welch,et al.  Optical properties of GaInAs/AlInAs single quantum wells , 1983 .

[17]  R. L. Barns,et al.  Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP , 1978 .

[18]  H. Morkoç,et al.  Investigation of GaAs/(Al,Ga)As multiple quantum wells by photoreflectance , 1987 .

[19]  J. Hegarty,et al.  Observation of optical Stark effect in InGaAs/InP multiple quantum wells , 1987 .

[20]  F. Lukes̆ Electroreflectance spectrum of inas in the range of E0 and E0 + δ0 transitions , 1977 .

[21]  L. Hrivnák Determination of Γ electron and light hole effective masses in AlxGa1-xAs on the basis of energy gaps, band-gap offsets, and energy levels in AlxGa1-xAs/GaAs quantum wells , 1990 .

[22]  Aron Pinczuk,et al.  Compositional dependence of band‐gap energy and conduction‐band effective mass of In1−x−yGaxAlyAs lattice matched to InP , 1982 .

[23]  D. Turnbull,et al.  Solid State Physics : Advances in Research and Applications , 1978 .

[24]  R. Azoulay,et al.  Disordering of Ga1−xAlxAs‐GaAs quantum well structures by donor sulfur diffusion , 1985 .

[25]  C. B. Duke,et al.  Space-Charge Effects on Electron Tunneling , 1966 .

[26]  D. A. Kleinman,et al.  Luminescence studies of optically pumped quantum wells in GaAs- Al x Ga 1 − x As multilayer structures , 1980 .

[27]  N. Sano,et al.  Electro‐optical bistability in strained InxGa1−xAs/Al0.15Ga0.85As multiple quantum wells , 1990 .

[28]  Logan,et al.  Direct-energy-gap dependence on Al concentration in AlxGa , 1988, Physical review. B, Condensed matter.

[29]  Leo J. Missaggia,et al.  AlInGaAs/AlGaAs separate‐confinement heterostructure strained single quantum well diode lasers grown by organometallic vapor phase epitaxy , 1991 .

[30]  Determination of the analytical and the nonanalytical part of the exchange interaction of InP and GaAs from polariton spectra in intermediate magnetic fields , 1979 .

[31]  J. Marzin,et al.  Optical studies of InxGa1−xAs‐GaAs strained multiquantum well structures , 1983 .

[32]  P. Petroff,et al.  GaInAs(P)/InP quantum well structures grown by gas source molecular beam epitaxy , 1985 .

[33]  B. Deveaud,et al.  Optical determination of the AlxGa1−xAs energy gap variation versus the Al concentration in MBE-grown samples , 1987 .

[34]  Brandt,et al.  Optical properties of a high-quality (311)-oriented GaAs/Al0.33Ga0.67As single quantum well. , 1993, Physical review. B, Condensed matter.

[35]  Gérald Bastard,et al.  Electronic states in semiconductor heterostructures , 1986 .

[36]  M. S. Skolnick,et al.  InGaAs‐InP multiple quantum wells grown by atmospheric pressure metalorganic chemical vapor deposition , 1987 .

[37]  P. Demeester,et al.  High quality In0.15Ga0.85As/AlxGa1-xAs strained multi quantum wells grown by metalorganic vapor phase epitaxy , 1992 .

[38]  W. M. Yim Direct and Indirect Optical Energy Gaps of AlAs , 1971 .

[39]  Gustaaf Borghs,et al.  Strain effects and band offsets in GaAs/InGaAs strained layered quantum structures , 1989 .

[40]  A. Cricenti,et al.  Evaluation of electron-phonon coupling of Al0.27Ga0.73As/GaAs quantum wells by normal incidence reflectance , 1991 .

[41]  Y. Horikoshi,et al.  Photoluminescence from InGaAs-GaAs strained-layer superlattices grown by flow-rate modulation epitaxy , 1988 .

[42]  Nakashima,et al.  Line-shape analysis of the reflectivity spectra of GaAs/(Ga,Al)As single quantum wells grown on (001)- and (311)-oriented substrates. , 1990, Physical review. B, Condensed matter.

[43]  M. Panish,et al.  Strained‐layer Ga1−xInxAs/InP avalanche photodetectors , 1988 .

[44]  S. M. Wang,et al.  Influence of cap layer thickness on optical quality in In0.2Ga0.8As/GaAs single quantum wells , 1994 .

[45]  Chen,et al.  Photoluminescence and photoconductivity measurements on band-edge offsets in strained molecular-beam-epitaxy-grown InxGa , 1988, Physical review. B, Condensed matter.

[46]  J. P. André,et al.  Photoluminescence investigation of InGaAs‐InP quantum wells , 1987 .

[47]  C. Fonstad,et al.  Absorption spectroscopy on room temperature excitonic transitions in strained layer InGaAs/InGaAlAs multiquantum‐well structures , 1993 .

[48]  G. B. Stringfellow,et al.  Atomic steps at GaInAs/InP interfaces grown by organometallic vapor phase epitaxy , 1988 .

[49]  Larry A. Coldren,et al.  Theoretical gain in strained InGaAs/AlGaAs quantum wells including valence‐band mixing effects , 1990 .

[50]  K. Lau,et al.  Exciton photoluminescence linewidths in very narrow AlGaAs/GaAs and GaAs/InGaAs quantum wells , 1988 .

[51]  Fred H. Pollak,et al.  Temperature dependence of the photoreflectance of a strained layer (001) In0.21Ga0.79As/GaAs single quantum well , 1991 .

[52]  H. Uenohara,et al.  Long-wavelength multiple-quantum-well voltage-controlled bistable laser diodes , 1995 .

[53]  Piet Demeester,et al.  Very low saturation densities in strained InGaAs/AlGaAs multiple quantum wells , 1994 .

[54]  Harry H. Wieder,et al.  Electroabsorption in an InGaAs/GaAs strained‐layer multiple quantum well structure , 1986 .

[55]  J. I. Davies,et al.  Optical studies of excitons in Ga0.47In0.53As/InP multiple quantum wells , 1987 .

[56]  Toshiaki Kagawa,et al.  Ultrafast 1.55‐μm photoresponses in low‐temperature‐grown InGaAs/InAlAs quantum wells , 1994 .

[57]  Marvin L. Cohen,et al.  Band Structures and Pseudopotential Form Factors for Fourteen Semiconductors of the Diamond and Zinc-blende Structures , 1966 .

[58]  A. Smirl,et al.  Observation of symmetery forbidden transitions in the room temperature photoreflectance spectrum of a GaAs/GaAlAs multiple quantum well , 1986 .

[59]  E. Herbert Li,et al.  Exciton optical absorption in a diffusion-induced nonsquare AlGaAs/GaAs quantum well , 1992, Other Conferences.

[60]  G. B. Stringfellow,et al.  GaInAs/InP quantum wells grown by organometallic vapor phase epitaxy , 1985 .

[61]  J. Marsh,et al.  Photoluminescence from In0.53Ga0.47As/InP quantum wells grown by molecular beam epitaxy , 1985 .

[62]  S. Chu,et al.  Lateral thickness modulation of InGaAs/InP quantum wells grown by metalorganic molecular beam epitaxy , 1994 .

[63]  R. Schwabe,et al.  Photoluminescence of AlxGa1-xAs near the Γ-X crossover , 1987 .

[64]  David A. B. Miller,et al.  Quantum well carrier sweep out: relation to electroabsorption and exciton saturation , 1991 .

[65]  A. Schlachetzki,et al.  Optical parameters of InP-based waveguides , 1987 .

[66]  F. Martelli,et al.  Room‐temperature photoluminescence in strained quantum wells of InGaAs/GaAs grown by molecular‐beam epitaxy , 1992 .

[67]  Nickel,et al.  Influence of exciton localization on recombination line shapes: InxGa1-xAs/GaAs quantum wells as a model. , 1992, Physical review. B, Condensed matter.

[68]  G. B. Stringfellow,et al.  Strain effects on GaxIn1−xAs/InP single quantum wells grown by organometallic vapor‐phase epitaxy with 0≤x≤1 , 1990 .

[69]  J. Muszalski,et al.  The effect of pressure on the luminescence from GaAs/AlGaAs quantum wells , 1994 .

[70]  E. Kapon,et al.  Growth of InGaAs/InAlAs quantum wells on InP patterned substrates by molecular beam epitaxy , 1990 .

[71]  E. Kane,et al.  Band structure of indium antimonide , 1957 .

[72]  H. Casey,et al.  Optical absorption and photoluminescence studies of thin GaAs layers in GaAs–AlxGa1−xAs double heterostructures , 1974 .

[73]  Miller,et al.  Band-gap renormalization in semiconductor quantum wells containing carriers. , 1985, Physical review. B, Condensed matter.

[74]  Marzin,et al.  Optical investigation of a new type of valence-band configuration in InxGa1-xAs-GaAs strained superlattices. , 1985, Physical review. B, Condensed matter.

[75]  Thomas P. Pearsall,et al.  GaInAsP alloy semiconductors , 1982 .

[76]  Needs,et al.  Improved model-solid-theory calculations for valence-band offsets at semiconductor-semiconductor interfaces. , 1992, Physical review. B, Condensed matter.

[77]  K. Wakita,et al.  High-temperature excitons and enhanced electroabsorption in InGaAs/InAlAs multiple quantum wells , 1985 .

[78]  I. J. Fritz,et al.  Electroreflectance spectra of InGaAs/AlGaAs strained quantum-well structures , 1990 .

[79]  Harris,et al.  Spectroscopy of excited states in In0.53Ga0.47 As-InP single quantum wells grown by chemical-beam epitaxy. , 1986, Physical review. B, Condensed matter.

[80]  Peng,et al.  Absorption coefficients and exciton oscillator strengths in AlGaAs-GaAs superlattices. , 1985, Physical review. B, Condensed matter.

[81]  T. Fujii,et al.  Room‐temperature exciton optical absorption peaks in InGaAsP/InP multiple quantum wells , 1989 .

[82]  G. Sonek,et al.  Dielectric properties of GaAs AlGaAs multiple quantum well waveguides , 1986 .

[83]  M. Panish,et al.  Photoinduced intersubband absorption in lattice-matched InGaAs/InP multiquantum well , 1991 .

[84]  D. Ahn,et al.  Band‐gap renormalization effects on 980 nm strained‐layer InGaAs/AlGaAs quantum‐well lasers , 1994 .

[85]  D. A. Kleinman,et al.  Energy-gap discontinuities and effective masses for G a A s − Al x Ga 1 − x As quantum wells , 1984 .

[86]  Submillimetre cyclotron resonance measurement of the effective masses of the holes in p-type GaP , 1973 .

[87]  P. Lawaetz,et al.  Valence-Band Parameters in Cubic Semiconductors , 1971 .

[88]  K. Lau,et al.  AlGaAs/GaAs quantum wells with high carrier confinement and luminescence efficiencies by organometallic chemical vapor deposition , 1987 .

[89]  R. M. Kolbas,et al.  Strained-layer InGaAs-GaAs-AlGaAs photopumped and current injection lasers , 1988 .

[90]  M P C M Krijn,et al.  Heterojunction band offsets and effective masses in III-V quaternary alloys , 1991 .

[91]  K. H. Ploog,et al.  Recombination Enhancement due to Carrier Localization in Quantum Well Structures , 1983 .

[92]  M. Cardona Fundamental Reflectivity Spectrum of Semiconductors with Zinc‐Blende Structure , 1961 .

[93]  H. Moos,et al.  Zeeman effect polarimetry of Ti XVII 3834 Å line in the Texas Experimental Tokamak , 1986 .

[94]  L. Johnson,et al.  Direct Transition and Exciton Effects in the Photoconductivity of Gallium Phosphide , 1964 .

[95]  O. Berolo,et al.  Electroreflectance Spectra of AlxGa1−xAs Alloys , 1971 .

[96]  Thorvald G. Andersson,et al.  Variation of the critical layer thickness with In content in strained InxGa1−xAs‐GaAs quantum wells grown by molecular beam epitaxy , 1987 .

[97]  L. W. James,et al.  Bandgap and lattice constant of GaInAsP as a function of alloy composition , 1974 .

[98]  A. Forchel,et al.  Photoluminescence study of interdiffusion in In0.53Ga0.47As/InP surface quantum wells , 1992 .

[99]  A. J. Howard,et al.  Broad-band light-emitting diode for 1.4-2.0 μm using variable-composition InGaAs quantum wells , 1995, IEEE Photonics Technology Letters.

[100]  Songcheol Hong,et al.  System requirements and feasibility studies for optical modulators based on GaAs/AlGaAs multiquantum well structures for optical processing , 1988 .

[101]  T. Kuech,et al.  Dependence of the AlxGa1−xAs band edge on alloy composition based on the absolute measurement of x , 1987 .

[102]  Temkin,et al.  Excitonic transitions in lattice-matched Ga1-xInxAs/InP quantum wells. , 1988, Physical review. B, Condensed matter.

[103]  Modeling of InGaAs/InAlAs coupled double quantum wells , 1994 .

[104]  S. Adachi,et al.  Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb. , 1987, Physical review. B, Condensed matter.

[105]  J. Fouquet,et al.  Structural and photoluminescent properties of GaInAs quantum wells with InP barriers grown by organometallic vapor phase epitaxy , 1987 .

[106]  M. Pessa,et al.  Room-temperature photoconductivity of InGaAs/GaAs strained-layer superlattices , 1991 .

[107]  K. Ploog,et al.  Photoluminescence of GaAs single quantum wells confined by short‐period all‐binary GaAs/AlAs superlattices , 1984 .

[108]  K. Suzuki,et al.  Anomalous shape of cyclotron resonance line in n-GaP in high magnetic fields , 1976 .

[109]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[110]  B. V. Shanabrook,et al.  Photoreflectance of GaAs/GaAlAs multiple quantum wells: Topographical variations in barrier height and well width , 1986 .

[111]  R. C. Miller,et al.  Al‐Ga disorder in AlxGa1−xAs alloys grown by molecular beam epitaxy , 1981 .

[112]  M. Cardona Electron Effective Masses of InAs and GaAs as a Function of Temperature and Doping , 1961 .

[113]  C. M. Wolfe,et al.  Precision verification of effective mass theory for shallow donors in GaAs , 1971 .

[114]  U. Koren,et al.  High quality narrow GaInAs/InP quantum wells grown by atmospheric organometallic vapor phase epitaxy , 1986 .

[115]  G. Guillot,et al.  Photoreflectance studies of lattice‐matched and strained InGaAs/InAlAs single quantum wells , 1993 .

[116]  Y. Tang Photoreflectance of InxGa1-xAs/GaAs strained-layer superlattices , 1989 .

[117]  Hayakawa,et al.  Enhancement in optical transition in (111)-oriented GaAs-AlGaAs quantum well structures. , 1988, Physical review letters.

[118]  M. Erman,et al.  Electronic states and thicknesses of GaAs/GaAlAs quantum wells as measured by electroreflectance and spectroscopic ellipsometry , 1984 .

[119]  Chu,et al.  Anisotropic optical properties of (110)-oriented quantum wells. , 1991, Physical review. B, Condensed matter.

[120]  Dawson,et al.  Unambiguous observation of the 2s state of the light- and heavy-hole excitons in GaAs-(AlGa)As multiple-quantum-well structures. , 1986, Physical review. B, Condensed matter.

[121]  Emil S. Koteies A Purely Spectroscopic Technique for Determining Energy Band Offsets in Quantum Wells , 1991 .

[123]  George David Pettit,et al.  Some optical properties of the AlxGa1−xAs alloys system , 1976 .

[124]  Inspec,et al.  Properties of lattice-matched and strained indium gallium arsenide , 1993 .

[125]  Chi,et al.  Resonance broadening of the light-hole exciton in GaAs/AlxGa , 1988, Physical review. B, Condensed matter.

[126]  A. Y. Cho,et al.  Ga0.47In0.53As/Al0.48In0.52As multiquantum-well LEDs emitting at 1.6 μm , 1983 .

[127]  Gil,et al.  Differential spectroscopy of GaAs-Ga1-xA , 1987, Physical review. B, Condensed matter.

[128]  E. Mendez,et al.  Electric field induced decrease of photoluminescence lifetime in GaAs quantum wells , 1985 .

[129]  Chi,et al.  Experimental exciton binding energies in GaAs/AlxGa , 1988, Physical review. B, Condensed matter.

[130]  Leroy L. Chang,et al.  Effect of an electric field on the luminescence of GaAs quantum wells , 1982 .

[131]  M. Razeghi,et al.  Growth of Ga0.47In0.53As‐InP quantum wells by low pressure metalorganic chemical vapor deposition , 1983 .

[132]  R.G. Waters,et al.  Dark-line-resistant diode laser at 0.8 mu m comprising InAlGaAs strained quantum well , 1991, IEEE Photonics Technology Letters.

[133]  L. Chen,et al.  ‘‘Fast’’ and ‘‘slow’’ metastable defects in hydrogenated amorphous silicon , 1993 .

[134]  H. Shen,et al.  Modulation spectroscopy characterization of MOCVD semiconductors and semiconductors structures , 1989 .

[135]  A. Gossard,et al.  Extrinsic photoluminescence from GaAs quantum wells , 1982 .

[136]  R. Enderlein,et al.  ON THE MECHANISMS OF PHOTOREFLECTANCE IN MULTIPLE QUANTUM WELLS , 1988 .

[137]  Yamazaki,et al.  Theoretical and experimental study of the optical-absorption spectrum of exciton resonance in In0.53Ga0.47As/InP quantum wells. , 1990, Physical review. B, Condensed matter.

[138]  David A. B. Miller,et al.  Electroabsorption by Stark effect on room‐temperature excitons in GaAs/GaAlAs multiple quantum well structures , 1983 .

[139]  Very high quality single and multiple GaAs quantum wells grown by chemical beam epitaxy , 1986 .

[140]  Bauer,et al.  Exciton binding energy in (Al,Ga)As quantum wells: Effects of crystal orientation and envelope-function symmetry. , 1988, Physical review. B, Condensed matter.

[141]  T. Fujii,et al.  Evaluation of exciton absorption peak broadening factors in InGaAsP/InP multiple quantum wells , 1988 .

[142]  John E. Bowers,et al.  Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strained-layer quantum well , 1994 .

[143]  D. Sell,et al.  Resolved Free-Exciton Transitions in the Optical-Absorption Spectrum of GaAs , 1972 .

[144]  Sadao Adachi,et al.  Material parameters of In1−xGaxAsyP1−y and related binaries , 1982 .

[145]  W. Tsang,et al.  Extremely high quality Ga0.47In0.53As/InP quantum wells grown by chemical beam epitaxy , 1986 .

[146]  N. Holonyak,et al.  High energy AlxGa1−xAs (0⩽x⩽0.1) quantum‐well heterostructure laser operation , 1982 .

[147]  Won-Tien Tsang,et al.  Observation of the excited level of excitons in GaAs quantum wells , 1981 .

[148]  Stolz,et al.  Absorption spectroscopy on Ga0.47In0.53As/Al0.48In0.52As multi-quantum-well heterostructures. II. Subband structure. , 1987, Physical review. B, Condensed matter.

[149]  H. Asahi,et al.  High‐temperature observation of heavy‐hole and light‐hole excitons in InGaAs/InP multiple quantum well structures grown by metalorganic molecular beam epitaxy , 1987 .

[150]  Nakashima,et al.  Dependence of the light-hole-heavy-hole splitting on layer thickness and substrate orientation in GaAs-(GaAl)As single-quantum wells. , 1989, Physical review. B, Condensed matter.

[151]  B. Weiss,et al.  Modelling and analysis of photoreflectance spectra of GaAs/AlGaAs single-quantum-well structures , 1995 .

[152]  R. Soref,et al.  Electrorefraction and electroabsorption in InP, GaAs, GaSb, InAs, and InSb , 1987 .

[153]  N. Sylvain Charbonneau,et al.  Physics of coupled double quantum wells , 1990, Other Conferences.

[154]  J. Reithmaier,et al.  Confinement of light hole valence‐band states in pseudomorphic InGaAs/Ga(Al)As quantum wells , 1990 .

[155]  D. Gershoni,et al.  Optical properties of III–V strained-layer quantum wells , 1989 .

[156]  Rajaram Bhat,et al.  Optical properties of AlxGa1−x As , 1986 .

[157]  P. Bhattacharya,et al.  Material properties and optical guiding in InGaAs-GaAs strained layer superlattices--a brief review , 1986 .

[158]  Hadis Morkoç,et al.  Optical investigation of highly strained InGaAs‐GaAs multiple quantum wells , 1987 .

[159]  M. Razeghi,et al.  Room‐temperature excitons in Ga0.47In0.53As‐InP superlattices grown by low‐pressure metalorganic chemical vapor deposition , 1986 .