Neuronal locus specificity: trans-repolarization of Xenopus embryonic retina after the time of axial specification.

Signaling within an embryonic Xenopus eye comprised of two fused eye fragments can reprogram, in turn, the anteroposterior and dorsoventral axes of one of the fragments. The responding fragment, subsequently isolated and allowed to round up and innervate the brain, shows corresponding inversions in its retinotectal map. This is the first evidence of trans-repolarization of presumptive retina and provides an assay system for analysis of positional signaling within the retinal field.

[1]  L. Stone Polarization of the retina and development of vision , 1960 .

[2]  R. Sperry CHEMOAFFINITY IN THE ORDERLY GROWTH OF NERVE FIBER PATTERNS AND CONNECTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M. Jacobson Development of neuronal specificity in retinal ganglion cells of Xenopus. , 1968, Developmental biology.

[4]  A. Garcı́a-Bellido,et al.  Clonal parameters of tergite development in Drosophila. , 1971, Developmental biology.

[5]  J. Hollyfield Differential growth of the neural retina in Xenopus laevis larvae. , 1971, Developmental biology.

[6]  R. M. Gaze,et al.  The growth of the retina in Xenopus laevis: an autoradiographic study. , 1971, Journal of embryology and experimental morphology.

[7]  R. M. Gaze,et al.  The Visual System and “Neuronal Specificity” , 1972, Nature.

[8]  R. Hunt,et al.  Development and stability of postional information in Xenopus retinal ganglion cells. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[9]  R K Hunt,et al.  Specification of positional information in retinal ganglion cells of Xenopus: stability of the specified state. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Hunt,et al.  The origins of nerve-cell specificity. , 1973, Scientific American.

[11]  R. Hunt,et al.  Specification of positional information in retinal ganglion cells of Xenopus: assays for analysis of the unspecified state. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. Hunt,et al.  Neuronal Locus Specificity: Altered Pattern of Spatial Deployment in Fused Fragments of Embryonic Xenopus Eyes , 1973, Science.

[13]  R. Hunt,et al.  Development of neuronal locus specificity in Xenopus retinal ganglion cells after surgical eye transection after fusion of whole eyes. , 1974, Developmental biology.

[14]  Keating Mj The role of visual function in the patterning of binocular visual connexions. , 1974 .

[15]  R. Hunt,et al.  Specification of positional information in retinal ganglion cells of Xenopus laevis: intra-ocular control of the time of specification. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. M. Gaze,et al.  The development of half‐eyes in Xenopus tadpoles , 1975 .

[17]  R. Hunt,et al.  Patterning of neuronal locus specificities in retinal ganglion cells after partial extirpation of the embryonic eye , 1975 .

[18]  R. Hunt,et al.  Visual projections to the optic tecta in Xenopus after partial extirpation of the embryonic eye , 1975 .