Dielectric investigation of the temperature dependence of the nonexponentiality of the dynamics of polymer melts.

Using broad band dielectric spectroscopy (10(-5)-10(9) Hz), combining time domain and frequency domain techniques, we study the temperature dependence of the non-Debye character of the alpha relaxation of polymer melts in the glass transition temperature T(g) range. The alpha relaxation process is described in terms of the Kohlrausch-Williams-Watts relaxation function which has a single parameter beta to characterize the nonexponentiality of the relaxation. At high temperatures, beta remains nearly insensitive to temperature changes, whereas in the vicinity of T(g) a nearly linear increasing of beta with temperature is found. The temperature range where the change of the beta(T) behavior occurs is located for all the polymers investigated around 1.2T(g). Moreover, our results indicate a common value of beta approximately equal to 1/3 at the temperature where the relaxation time diverges. The beta(T) behavior near T(g) is discussed in terms of a "rugged landscape" phase space which allows us to rationalize both the beta(T) behavior observed as well as the similarities of our findings near T(g) with the results reported in simulations on Ising spin glasses and other model systems.