Dielectric loaded graphene plasmon waveguide.

Dielectric loaded graphene plasmon waveguide (DLGPW) is proposed and investigated. An analytical model based on effective-index method is presented and verified by the finite element method simulations. The mode effective index, propagation loss, cutoff wavelength of higher order modes and single-mode operation region were derived at mid-infrared spectral region. By changing Fermi energy level, the propagation properties of fundamental mode could be tuned flexibly. The structure of the DLGPW is simple and easy for fabrication. It provided a new freedom to manipulate the graphene surface plasmons, which may led to new applications in actively tunable integrated optical devices.

[1]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[2]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[3]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[4]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[5]  Sergey I. Bozhevolnyi,et al.  Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides , 2007 .

[6]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[7]  Shuisheng Jian,et al.  Analytical model for plasmon modes in graphene-coated nanowire. , 2014, Optics express.

[8]  Lei Wang,et al.  Surface plasmon modes in graphene wedge and groove waveguides. , 2013, Optics express.

[9]  Alexey V. Krasavin,et al.  Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths , 2011 .

[10]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[11]  Richard Soref,et al.  Sub-wavelength Plasmonic Modes in a Conductor-gap-dielectric System with a Nanoscale Gap References and Links , 2022 .

[12]  Harald Ditlbacher,et al.  Dielectric stripes on gold as surface plasmon waveguides , 2006 .

[13]  Jani Kotakoski,et al.  Stability of graphene edges under electron beam: equilibrium energetics versus dynamic effects. , 2012, ACS nano.

[14]  Z. Zhu,et al.  Compact and broadband directional coupling and demultiplexing in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect , 2013 .

[15]  G. Hanson,et al.  Surface plasmon polaritons on soft-boundary graphene nanoribbons and their application in switching/demultiplexing , 2013 .

[16]  Lin Chen,et al.  A Graphene-Based Hybrid Plasmonic Waveguide With Ultra-Deep Subwavelength Confinement , 2014, Journal of Lightwave Technology.

[17]  T. Ebbesen,et al.  Channel plasmon-polariton guiding by subwavelength metal grooves. , 2005, Physical review letters.

[18]  F. D. Abajo,et al.  Graphene Plasmonics: Challenges and Opportunities , 2014, 1402.1969.

[19]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[20]  S. Thongrattanasiri,et al.  Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. , 2012, ACS nano.

[21]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[22]  L. Falkovsky,et al.  Optical far-infrared properties of a graphene monolayer and multilayer , 2007, 0707.1386.

[23]  Plasmon modes of silver nanowire on a silica substrate , 2010, 1009.3322.

[24]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[25]  P. Kim,et al.  Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. , 2010, Physical review letters.

[26]  K. Kjaer,et al.  Integrated optical components utilizing long-range surface plasmon polaritons , 2005, Journal of Lightwave Technology.

[27]  L Martin-Moreno,et al.  Channel plasmon-polaritons: modal shape, dispersion, and losses. , 2006, Optics letters.

[28]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.