PseudoBend: Producing Haptic Illusions of Stretching, Bending, and Twisting Using Grain Vibrations

We present PseudoBend, a haptic feedback technique that creates the illusion that a rigid device is being stretched, bent, or twisted. The method uses a single 6-DOF force sensor and a vibrotactile actuator to render grain vibrations to simulate the vibrations produced during object deformation based on the changes in force or torque exerted on a device. Because this method does not require any moving parts aside from the vibrotactile actuator, devices designed using this method can be small and lightweight. Psychophysical studies conducted using a prototype that implements this method confirmed that the method could be used to successfully create the illusion of deformation and could also change users' perception of stiffness by changing the virtual stiffness parameters.

[1]  Jeremy R. Cooperstock,et al.  Vibration Influences Haptic Perception of Surface Compliance During Walking , 2011, PloS one.

[2]  M. A. Srinivassan The impact of visual information on the haptic perception of stiffness in virtual environments , 1996 .

[3]  A.W. Law,et al.  A multi-modal floor-space for experiencing material deformation underfoot in virtual reality , 2008, 2008 IEEE International Workshop on Haptic Audio visual Environments and Games.

[4]  Geehyuk Lee,et al.  Vibrotactile Compliance Feedback for Tangential Force Interaction , 2017, IEEE Transactions on Haptics.

[5]  Allison M. Okamura,et al.  Modeling and design of asymmetric vibrations to induce ungrounded pulling sensation through asymmetric skin displacement , 2016, 2016 IEEE Haptics Symposium (HAPTICS).

[6]  Johan Kildal,et al.  Kooboh: Variable Tangible Properties in a Handheld Haptic-Illusion Box , 2012, EuroHaptics.

[7]  Lynette A. Jones,et al.  Application of Psychophysical Techniques to Haptic Research , 2013, IEEE Transactions on Haptics.

[8]  Anatole Lécuyer,et al.  Simulating Haptic Feedback Using Vision: A Survey of Research and Applications of Pseudo-Haptic Feedback , 2009, PRESENCE: Teleoperators and Virtual Environments.

[9]  Hiroshi Ishii,et al.  inFORCE: Bi-directional `Force' Shape Display for Haptic Interaction , 2019, TEI.

[10]  Abderrahmane Kheddar,et al.  Pseudo-haptic feedback: can isometric input devices simulate force feedback? , 2000, Proceedings IEEE Virtual Reality 2000 (Cat. No.00CB37048).

[11]  Vincent Hayward,et al.  Compressibility and Crushability Reproduction through an Amorphous Haptic Interface , 2012, EuroHaptics.

[12]  Vincent Hayward,et al.  A Device and Method for Multimodal Haptic Rendering of Volumetric Stiffness , 2014, EuroHaptics.

[13]  Eyal Ofek,et al.  TORC: A Virtual Reality Controller for In-Hand High-Dexterity Finger Interaction , 2019, CHI.

[14]  Shogo Okamoto,et al.  Vibrotactile Sensation and Softness Perception , 2014, Multisensory Softness.

[15]  Eyal Ofek,et al.  Haptic Links: Bimanual Haptics for Virtual Reality Using Variable Stiffness Actuation , 2018, CHI.

[16]  K. Fujita,et al.  A New Softness Display Interface by Dynamic Fingertip Contact Area Control by Dynamic Fingertip Cont , 2001 .

[17]  Astrid M. L. Kappers,et al.  Kinaesthetic and Cutaneous Contributions to the Perception of Compressibility , 2008, EuroHaptics.

[18]  Stephen McAdams,et al.  A Vibrotactile Device for Display of Virtual Ground Materials in Walking , 2008, EuroHaptics.

[19]  Woohun Lee,et al.  HapCube: A Wearable Tactile Device to Provide Tangential and Normal Pseudo-Force Feedback on a Fingertip , 2018, CHI.

[20]  Kosuke Sato,et al.  SoftAR: Visually Manipulating Haptic Softness Perception in Spatial Augmented Reality , 2015, IEEE Transactions on Visualization and Computer Graphics.

[21]  Jun Rekimoto,et al.  Traxion: a tactile interaction device with virtual force sensation , 2013, SIGGRAPH '14.

[22]  Maud Marchal,et al.  Multimodal Rendering of Walking Over Virtual Grounds , 2013 .

[23]  Roberta L. Klatzky,et al.  Haptic Rendering and Psychophysical Evaluation of a Virtual Three-Dimensional Helical Spring , 2008, 2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.

[24]  Makoto Sato,et al.  Wearable 6-DoF wrist haptic device "SPIDAR-W" , 2015, SIGGRAPH Asia Haptic Media And Contents Design.

[25]  M. Srinivasan,et al.  Tactual discrimination of softness. , 1995, Journal of neurophysiology.

[26]  Woohun Lee,et al.  HapThimble: A Wearable Haptic Device towards Usable Virtual Touch Screen , 2016, CHI.

[27]  Geehyuk Lee,et al.  Thor's Hammer: An Ungrounded Force Feedback Device Utilizing Propeller-Induced Propulsive Force , 2018, CHI.

[28]  Johan Kildal,et al.  3D-press: haptic illusion of compliance when pressing on a rigid surface , 2010, ICMI-MLMI '10.

[29]  Mike Sinclair,et al.  TouchMover: actuated 3D touchscreen with haptic feedback , 2013, ITS.

[30]  Geehyuk Lee,et al.  Haptic feedback design for a virtual button along force-displacement curves , 2013, UIST.

[31]  Topi Kaaresoja,et al.  Dynamic edge: finding eyes-free controls on orientation-agnostic devices , 2014, CHI Extended Abstracts.

[32]  Mike Sinclair,et al.  TouchMover 2.0 - 3D touchscreen with force feedback and haptic texture , 2014, 2014 IEEE Haptics Symposium (HAPTICS).

[33]  Antonio Bicchi,et al.  Haptic discrimination of softness in teleoperation: the role of the contact area spread rate , 2000, IEEE Trans. Robotics Autom..