Exploring Dance Movement Data Using Sequence Alignment Methods

Despite the abundance of research on knowledge discovery from moving object databases, only a limited number of studies have examined the interaction between moving point objects in space over time. This paper describes a novel approach for measuring similarity in the interaction between moving objects. The proposed approach consists of three steps. First, we transform movement data into sequences of successive qualitative relations based on the Qualitative Trajectory Calculus (QTC). Second, sequence alignment methods are applied to measure the similarity between movement sequences. Finally, movement sequences are grouped based on similarity by means of an agglomerative hierarchical clustering method. The applicability of this approach is tested using movement data from samba and tango dancers.

[1]  Christos Faloutsos,et al.  A signature technique for similarity-based queries , 1997, Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171).

[2]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[3]  Andrew U. Frank,et al.  Qualitative Spatial Reasoning: Cardinal Directions as an Example , 1996, Int. J. Geogr. Inf. Sci..

[4]  N. V. D. Weghe,et al.  The use of Bluetooth for analysing spatiotemporal dynamics of human movement at mass events: a case study of the Ghent Festivities. , 2012 .

[5]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[6]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[7]  Martin Raubal,et al.  Measuring similarity of mobile phone user trajectories– a Spatio-temporal Edit Distance method , 2014, Int. J. Geogr. Inf. Sci..

[8]  Dieter Pfoser,et al.  On Map-Matching Vehicle Tracking Data , 2005, VLDB.

[9]  Gennady Andrienko,et al.  Novel Method to Measure Inference Affordance in Static Small-Multiple Map Displays Representing Dynamic Processes , 2008 .

[10]  Clarke Wilson,et al.  Activity Patterns of Canadian Women: Application of ClustalG Sequence Alignment Software , 2001 .

[11]  S. C. Van der Spek,et al.  Urbanism on Track: Application of tracking technologies in urbanism , 2008 .

[12]  Gordon B. Stenhouse,et al.  Uncontrolled field performance of Televilt GPS-Simplex™ collars on grizzly bears in western and northern Canada , 2004 .

[13]  Michael S. Rosenberg,et al.  Sequence alignment : methods, models, concepts, and strategies , 2009 .

[14]  John F. Roddick,et al.  Geographic Data Mining and Knowledge Discovery , 2001 .

[15]  Kincho H. Law,et al.  A multi-agent based framework for the simulation of human and social behaviors during emergency evacuations , 2007, AI & SOCIETY.

[16]  Noam Shoval,et al.  Sequence Alignment as a Method for Human Activity Analysis in Space and Time , 2007 .

[17]  Nico Van de Weghe,et al.  Conceptual Neighbourhood Diagrams for Representing Moving Objects , 2005, ER.

[18]  Antony Galton,et al.  Dominance Diagrams: A Tool for Qualitative Reasoning About Continuous Systems , 2001, Fundam. Informaticae.

[19]  Christus,et al.  A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins , 2022 .

[20]  Jianwen Su,et al.  Shapes based trajectory queries for moving objects , 2005, GIS '05.

[21]  Tijs Neutens,et al.  Analysing spatiotemporal sequences in Bluetooth tracking data , 2012 .

[22]  Nico Van de Weghe,et al.  A Qualitative Trajectory Calculus to Reason about Moving Point Objects , 2012 .

[23]  Nico Van de Weghe Representing and Reasoning about Moving Objects: A Qualitative Approach , 2004 .

[24]  David M. Mark,et al.  Measuring similarity between geospatial lifelines in studies of environmental health , 2005, J. Geogr. Syst..

[25]  Dino Pedreschi,et al.  Mobility, Data Mining and Privacy - Geographic Knowledge Discovery , 2008, Mobility, Data Mining and Privacy.

[26]  Ta Theo Arentze,et al.  Activity pattern similarity : a multidimensional sequence alignment method , 2002 .

[27]  G. Dell’Omo,et al.  Finding home: the final step of the pigeons' homing process studied with a GPS data logger , 2007, Journal of Experimental Biology.

[28]  J. Squires,et al.  Effect of forest canopy on GPS-based movement data , 2005 .

[29]  Frank Witlox,et al.  The Qualitative Trajectory Calculus on Networks , 2006, Spatial Cognition.

[30]  Tetsuji Satoh,et al.  Shape-Based Similarity Query for Trajectory of Mobile Objects , 2003, Mobile Data Management.

[31]  Jun Luo,et al.  Finding long and similar parts of trajectories , 2009, Comput. Geom..

[32]  M. Wachowicz,et al.  Exploring visitor movement patterns in natural recreational areas. , 2012 .

[33]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[34]  Christian Freksa,et al.  Using Orientation Information for Qualitative Spatial Reasoning , 1992, Spatio-Temporal Reasoning.

[35]  Nico Van de Weghe,et al.  Implementing a qualitative calculus to analyse moving point objects , 2011, Expert Syst. Appl..

[36]  Martin Hvidberg,et al.  Tracking Human Exposure to Ultrafine Particles in Copenhagen Using GPS , 2006 .

[37]  Bernhard Nebel,et al.  Spatial Cognition IV, Reasoning, Action, Interaction , 2008 .

[38]  Peter A. Flach,et al.  Evaluation Measures for Multi-class Subgroup Discovery , 2009, ECML/PKDD.

[39]  A. Abbott Sequence analysis: new methods for old ideas , 1995 .

[40]  Nico Van de Weghe,et al.  Qualitative analysis of polygon shape-change , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[41]  Meinard Müller,et al.  Information retrieval for music and motion , 2007 .

[42]  Marc van Kreveld,et al.  The definition and computation of trajectory and subtrajectory similarity , 2007, GIS.

[43]  Clarke Wilson,et al.  Activity patterns in space and time: calculating representative Hagerstrand trajectories , 2008 .

[44]  Tijs Neutens,et al.  Mobile Mapping of Sporting Event Spectators Using Bluetooth Sensors: Tour of Flanders 2011 , 2012, Sensors.

[45]  Guy De Tré,et al.  The Double-Cross and the Generalization Concept as a Basis for Representing and Comparing Shapes of Polylines , 2005, OTM Workshops.

[46]  Jiawei Han,et al.  Geographic Data Mining and Knowledge Discovery , 2001 .

[47]  Noam Shoval,et al.  Tracking tourists in the digital age , 2007 .

[48]  A. Cohn,et al.  A qualitative trajectory calculus as a basis for representing moving objects in Geographical Information Systems , 2006 .

[49]  Orazio Mirabella,et al.  A motion capture system for sport training and rehabilitation , 2011, 2011 4th International Conference on Human System Interactions, HSI 2011.

[50]  Somayeh Dodge,et al.  Exploring movement using similarity analysis , 2011 .

[51]  Frank Witlox,et al.  Representing moving objects in computer-based expert systems: the overtake event example , 2005, Expert Syst. Appl..

[52]  Nikos Pelekis,et al.  Similarity Search in Trajectory Databases , 2007, 14th International Symposium on Temporal Representation and Reasoning (TIME'07).

[53]  Yannis Theodoridis,et al.  Index-based Most Similar Trajectory Search , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[54]  Robert Weibel,et al.  Movement similarity assessment using symbolic representation of trajectories , 2012, Int. J. Geogr. Inf. Sci..

[55]  Frank Witlox,et al.  Inferring additional knowledge from QTCN relations , 2011, Inf. Sci..

[56]  Robert Weibel,et al.  Discovering relative motion patterns in groups of moving point objects , 2005, Int. J. Geogr. Inf. Sci..

[57]  Wyatt Page,et al.  Fusion motion capture: A prototype system using inertial measurement units and GPS for the biomechanical analysis of ski racing , 2008 .

[58]  Tieniu Tan,et al.  Recent developments in human motion analysis , 2003, Pattern Recognit..

[59]  Fosca Giannotti,et al.  Traffic Jams Detection Using Flock Mining , 2011, ECML/PKDD.

[60]  Tijs Neutens,et al.  How to Handle Incomplete Knowledge Concerning Moving Objects , 2007, BMI.

[61]  David W Mount,et al.  Dot matrix pairwise sequence comparison. , 2007, CSH protocols.

[62]  Clarke Wilson,et al.  Reliability of Sequence-Alignment Analysis of Social Processes: Monte Carlo Tests of Clustalg Software , 2006 .

[63]  Max J. Egenhofer,et al.  Modeling Moving Objects over Multiple Granularities , 2002, Annals of Mathematics and Artificial Intelligence.

[64]  Shyamanta M. Hazarika,et al.  Qualitative Spatio-Temporal Representation and Reasoning: Trends and Future Directions , 2012 .

[65]  Katina Michael,et al.  Location-based intelligence - modeling behavior in humans using GPS , 2006, 2006 IEEE International Symposium on Technology and Society.

[66]  Bernard De Baets,et al.  Knowledge discovery in choreographic data using Relative Motion matrices and Dynamic Time Warping , 2014 .

[67]  Giancarlo Facoetti,et al.  Virtual Testing Laboratory for Lower Limb Prosthesis , 2013 .