Terahertz hyperspectral imaging with dual chip-scale combs

Hyperspectral imaging is a spectroscopic imaging technique that allows for the creation of images with pixels containing information from multiple spectral bands. At terahertz wavelengths, it has emerged as a prominent tool for a number of applications, ranging from nonionizing cancer diagnosis and pharmaceutical characterization to nondestructive artifact testing. Contemporary terahertz imaging systems typically rely on nonlinear optical downconversion of a fiber-based near-infrared femtosecond laser, requiring complex optical systems. Here, we demonstrate hyperspectral imaging with chip-scale frequency combs based on terahertz quantum cascade lasers. The dual combs are free-running and emit coherent terahertz radiation that covers a bandwidth of 220 GHz at 3.4 THz with ∼10  μW per line. The combination of the fast acquisition rate of dual-comb spectroscopy with the monolithic design, scalability, and chip-scale size of the combs is highly appealing for future imaging applications in biomedicine and the pharmaceutical industry.

[1]  Daniel M Mittleman,et al.  Twenty years of terahertz imaging [Invited]. , 2018, Optics express.

[2]  Andrew D. Burnett,et al.  Dual-frequency imaging using an electrically tunable terahertz quantum cascade laser , 2009 .

[3]  Yaochun Shen,et al.  Analysis of coating structures and interfaces in solid oral dosage forms by three dimensional terahertz pulsed imaging. , 2007, Journal of pharmaceutical sciences.

[4]  I. Coddington,et al.  Dual-comb spectroscopy. , 2016, Optica.

[5]  Mattias Beck,et al.  Octave-spanning semiconductor laser , 2014, Nature Photonics.

[6]  Vincent P Wallace,et al.  Terahertz pulsed imaging of human breast tumors. , 2006, Radiology.

[7]  Kai Liu,et al.  Recent advances in terahertz technology for biomedical applications. , 2017, Quantitative imaging in medicine and surgery.

[8]  Qing Hu,et al.  Terahertz laser frequency combs , 2014, Nature Photonics.

[9]  Esther Baumann,et al.  High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm , 2017, 1709.07105.

[10]  Bo Zhang,et al.  Terahertz time-domain spectroscopy of l-histidine hydrochloride monohydrate , 2018 .

[11]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[12]  M. Menu,et al.  Terahertz imaging for non-destructive evaluation of mural paintings , 2008 .

[13]  Patrick Mounaix,et al.  Non-invasive investigation of art paintings by terahertz imaging , 2010 .

[14]  D. Burghoff,et al.  Lateral Heterogeneous Integration of Quantum Cascade Lasers , 2018, ACS Photonics.

[15]  P. Werle,et al.  The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS) , 1993 .

[16]  Qing Hu,et al.  Terahertz laser frequency combs , 2014 .

[17]  J. Faist,et al.  Mid-infrared frequency comb based on a quantum cascade laser , 2012, Nature.

[18]  K. Cossel,et al.  Mid-Infrared Dual-Comb Spectroscopy of Volatile Organic Compounds Across Long Open-Air Paths , 2019, 2019 Conference on Lasers and Electro-Optics (CLEO).

[19]  G. Scalari,et al.  Quantum cascade lasers: 20 years of challenges. , 2015, Optics express.

[20]  F. Capasso,et al.  Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation , 2007 .

[21]  B. Sartorius,et al.  All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths. , 2008, Optics express.

[22]  Michal Lipson,et al.  Silicon-chip-based mid-infrared dual-comb spectroscopy , 2016, Nature Communications.

[23]  A. Lee,et al.  Real-time terahertz imaging over a standoff distance (>25meters) , 2006 .

[24]  J. Faist,et al.  Single-Shot Sub-microsecond Mid-infrared Spectroscopy on Protein Reactions with Quantum Cascade Laser Frequency Combs. , 2018, Analytical chemistry.

[25]  Shuting Fan,et al.  The potential of terahertz imaging for cancer diagnosis: A review of investigations to date. , 2012, Quantitative imaging in medicine and surgery.

[26]  P. Taday,et al.  Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging. , 2005, Journal of pharmaceutical sciences.

[27]  Takeshi Yasui,et al.  Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers , 2015, Scientific reports.

[28]  Yves Bidaux,et al.  Dual comb operation of λ ̃ 8.2 μm quantum cascade laser frequency comb with 1 W optical power , 2017 .

[29]  Jérôme Faist,et al.  Dual-comb spectroscopy based on quantum cascade laser frequency combs , 2015, CLEO 2015.

[30]  S. Kumar,et al.  Real-time imaging using a 4.3-THz quantum cascade laser and a 320 /spl times/ 240 microbolometer focal-plane array , 2006, IEEE Photonics Technology Letters.

[31]  S. Jacobsson Optically pumped far infrared lasers , 1989 .

[32]  Gerard Wysocki,et al.  Mid-infrared multiheterodyne spectroscopy with phase-locked quantum cascade lasers , 2017 .

[33]  P. Taday,et al.  Temperature dependent terahertz pulsed spectroscopy of carbamazepine , 2005 .

[34]  Charles D. Merritt,et al.  Multiheterodyne spectroscopy using interband cascade lasers , 2017, 1709.03042.

[35]  Fritz Keilmann,et al.  Time-domain mid-infrared frequency-comb spectrometer. , 2004, Optics letters.

[36]  B. Williams Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.

[37]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[38]  Konstantin L. Vodopyanov,et al.  Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs , 2018 .

[39]  Qing Hu,et al.  Terahertz multiheterodyne spectroscopy using laser frequency combs , 2016, 1604.01048.