Anomalous spectral scaling of light emission rates in low-dimensional metallic nanostructures

The strength of light emission near metallic nanostructures can scale anomalously with frequency and dimensionality. We find that light-matter interactions in plasmonic systems confined in two dimensions (e.g., near metal nanowires) strengthen with decreasing frequency owing to strong mode confinement away from the surface-plasmon frequency. The anomalous scaling also applies to the modulation speed of plasmonic light sources, including lasers, with modulation bandwidths growing at lower carrier frequencies. This allows developing optical devices that exhibit simultaneously femtosecond response times at the nanometer scale, even at longer wavelengths into the mid-IR, limited only by nonlocal effects and reversible light-matter coupling.

[1]  H. Miyazaki,et al.  Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. , 2006, Physical review letters.

[2]  Takashi Mukai,et al.  Surface-plasmon-enhanced light emitters based on InGaN quantum wells , 2004, Nature materials.

[3]  Dirk Englund,et al.  Ultrafast photonic crystal nanocavity laser , 2006 .

[4]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[5]  D. Genov,et al.  Active Plasmonics: Surface Plasmon Interaction With Optical Emitters , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[7]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[8]  G. W. Ford,et al.  Electromagnetic interactions of molecules with metal surfaces , 1984 .

[9]  Y. Yamamoto,et al.  Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity. , 2001, Physical review letters.

[10]  Xiang Zhang,et al.  Plasmonic Fabry-Pérot nanocavity. , 2009, Nano letters.

[11]  A. Morimoto,et al.  Guiding of a one-dimensional optical beam with nanometer diameter. , 1997, Optics letters.

[12]  G. Mahan Many-particle physics , 1981 .

[13]  Vladimir M. Shalaev,et al.  Resonant Field Enhancements from Metal Nanoparticle Arrays , 2004 .

[14]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[15]  R. Silbey,et al.  Molecular Fluorescence and Energy Transfer Near Interfaces , 2007 .

[16]  T. Asano,et al.  Ultra-high-Q photonic double-heterostructure nanocavity , 2005 .

[17]  M. Stockman Attosecond physics: An easier route to high harmony , 2008, Nature.

[18]  Carmichael,et al.  Subnatural linewidth averaging for coupled atomic and cavity-mode oscillators. , 1989, Physical review. A, General physics.

[19]  T. Carmon,et al.  Visible continuous emission from a silica microphotonic device by third harmonic generation , 2005, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[20]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[21]  Feng Wang,et al.  General properties of local plasmons in metal nanostructures. , 2006, Physical review letters.

[22]  D. E. Chang,et al.  Strong coupling of single emitters to surface plasmons , 2006, quant-ph/0603221.

[23]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[24]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[25]  A S Sørensen,et al.  Quantum optics with surface plasmons. , 2005, Physical review letters.

[26]  H.A. Wheeler,et al.  Fundamental Limitations of Small Antennas , 1947, Proceedings of the IRE.

[27]  H. Kano,et al.  Two-photon-excited fluorescence enhanced by a surface plasmon. , 1996, Optics letters.

[28]  D. Ritchie,et al.  Observation of the Purcell effect in high-index-contrast micropillar , 2007, 0709.2101.

[29]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[30]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[31]  Wolfgang Knoll,et al.  Surface-Plasmon Field-Enhanced Fluorescence Spectroscopy , 2000 .

[32]  A. Bloom Quantum Electronics , 1972, Nature.

[33]  Xiang Zhang,et al.  Surface Plasmon Amplification in Planar Metal Films , 2007, IEEE Journal of Quantum Electronics.

[34]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[35]  Fouad Karouta,et al.  Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. , 2009, Optics express.

[36]  Andrew G. Glen,et al.  APPL , 2001 .