Generalized Line Spectral Estimation via Convex Optimization

Line spectral estimation is the problem of recovering the frequencies and amplitudes of a mixture of a few sinusoids from equispaced samples. However, in a variety of signal processing problems arising in imaging, radar, and localization, we do not have access directly to such equispaced samples. Rather, we only observe a severely undersampled version of these observations through linear measurements. This paper is about such generalized line spectral estimation problems. We reformulate these problems as sparse signal recovery problems over a continuously indexed dictionary, which can be solved via a convex program. We prove that the frequencies and amplitudes of the components of the mixture can be recovered perfectly from a near-minimal number of observations via this convex program. This result holds provided the frequencies are sufficiently separated, and the linear measurements obey natural conditions that are satisfied in a variety of applications.

[1]  Yotaro Kubo A Proof of Lemma 1 , 2014 .

[2]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[3]  Nir Ailon,et al.  An almost optimal unrestricted fast Johnson-Lindenstrauss transform , 2010, SODA '11.

[4]  Lihua Xie,et al.  Vandermonde Decomposition of Multilevel Toeplitz Matrices With Application to Multidimensional Super-Resolution , 2015, IEEE Transactions on Information Theory.

[5]  K. Fernow New York , 1896, American Potato Journal.

[6]  Helmut Bölcskei,et al.  Identification of Sparse Linear Operators , 2012, IEEE Transactions on Information Theory.

[7]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[8]  Emmanuel J. Cand Towards a Mathematical Theory of Super-Resolution , 2012 .

[9]  Daniel Pérez Palomar,et al.  Space-Time Processing for MIMO Communications , 2004 .

[10]  Holger Rauhut,et al.  Suprema of Chaos Processes and the Restricted Isometry Property , 2012, ArXiv.

[11]  P. Bello Characterization of Randomly Time-Variant Linear Channels , 1963 .

[12]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[13]  Jian Li,et al.  Source Localization and Sensing: A Nonparametric Iterative Adaptive Approach Based on Weighted Least Squares , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[14]  M. Rudelson,et al.  Hanson-Wright inequality and sub-gaussian concentration , 2013 .

[15]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[16]  Yuejie Chi,et al.  Off-the-Grid Line Spectrum Denoising and Estimation With Multiple Measurement Vectors , 2014, IEEE Transactions on Signal Processing.

[17]  Y. Gordon Some inequalities for Gaussian processes and applications , 1985 .

[18]  Helmut Bölcskei,et al.  A Theory of Super-Resolution from Short-Time Fourier Transform Measurements , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[19]  Charles R. Johnson,et al.  Matrix Analysis, 2nd Ed , 2012 .

[20]  Y. Gordon On Milman's inequality and random subspaces which escape through a mesh in ℝ n , 1988 .

[21]  Mahdi Soltanolkotabi,et al.  Generalized line spectral estimation for radar and localization , 2016, 2016 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa).

[22]  Jian Li,et al.  Iterative Adaptive Approaches to MIMO Radar Imaging , 2010, IEEE Journal of Selected Topics in Signal Processing.

[23]  Christos Thrampoulidis,et al.  The squared-error of generalized LASSO: A precise analysis , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[24]  H. Rauhut Random Sampling of Sparse Trigonometric Polynomials , 2005, math/0512642.

[25]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[26]  Jian Li,et al.  MIMO Radar with Colocated Antennas , 2007, IEEE Signal Processing Magazine.

[27]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[28]  Emmanuel J. Candès,et al.  A Probabilistic and RIPless Theory of Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[29]  Lawrence A. Harris,et al.  Bernstein's Polynomial Inequalities and Functional Analysis , 1996, Irish Mathematical Society Bulletin.

[30]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[31]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[32]  Holger Rauhut,et al.  Refined Analysis of Sparse MIMO Radar , 2015, ArXiv.

[33]  Benjamin Recht,et al.  Sharp Time–Data Tradeoffs for Linear Inverse Problems , 2015, IEEE Transactions on Information Theory.

[34]  Gongguo Tang,et al.  Near minimax line spectral estimation , 2013, 2013 47th Annual Conference on Information Sciences and Systems (CISS).

[35]  Gongguo Tang,et al.  Atomic Norm Denoising With Applications to Line Spectral Estimation , 2012, IEEE Transactions on Signal Processing.

[36]  Sjoerd Dirksen,et al.  Tail bounds via generic chaining , 2013, ArXiv.

[37]  Benjamin Recht,et al.  Isometric sketching of any set via the Restricted Isometry Property , 2015, ArXiv.

[38]  Rachel Ward,et al.  New and Improved Johnson-Lindenstrauss Embeddings via the Restricted Isometry Property , 2010, SIAM J. Math. Anal..

[39]  Thomas Strohmer,et al.  High-Resolution Radar via Compressed Sensing , 2008, IEEE Transactions on Signal Processing.

[40]  Babak Hassibi,et al.  Asymptotically Exact Denoising in Relation to Compressed Sensing , 2013, ArXiv.

[41]  Weiyu Xu,et al.  Robust recovery of complex exponential signals from random Gaussian projections via low rank Hankel matrix reconstruction , 2015, Applied and computational harmonic analysis.

[42]  Emmanuel J. Candès,et al.  Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.

[43]  Reinhard Heckel,et al.  Super-Resolution Radar , 2014, ArXiv.

[44]  D. Donoho Superresolution via sparsity constraints , 1992 .

[45]  Thomas Strohmer,et al.  Adventures in Compressive Sensing Based MIMO Radar , 2015 .

[46]  Reinhard Heckel,et al.  Super-resolution MIMO radar , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[47]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[48]  Carlos Fernandez-Granda,et al.  Super-resolution of point sources via convex programming , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).