Tight bounds for parameterized complexity of Cluster Editing with a small number of clusters

In the Cluster Editing problem, also known as Correlation Clustering, we are given an undirected n-vertex graph G and a positive integer k. The task is to decide if G can be transformed into a cluster graph, i.e., a disjoint union of cliques, by changing at most k adjacencies, i.e. by adding/deleting at most k edges. We give a subexponential-time parameterized algorithm that in time View the MathML source decides whether G can be transformed into a cluster graph with exactly p cliques by changing at most k adjacencies. Our algorithmic findings are complemented by the following tight lower bound on the asymptotic behavior of our algorithm. We show that unless ETH fails, for any constant 0<σ≤1, there is p=Θ(kσ) such that there is no algorithm deciding in time View the MathML source whether G can be transformed into a cluster graph with at most p cliques by changing at most k adjacencies.

[1]  Michal Pilipczuk,et al.  Tight bounds for Parameterized Complexity of Cluster Editing , 2013, STACS.

[2]  Venkatesan Guruswami,et al.  Correlation clustering with a fixed number of clusters , 2005, SODA '06.

[3]  Sebastian Böcker,et al.  Cluster Editing , 2013, CiE.

[4]  Venkatesan Guruswami,et al.  Clustering with qualitative information , 2005, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[5]  Dániel Marx,et al.  What's Next? Future Directions in Parameterized Complexity , 2012, The Multivariate Algorithmic Revolution and Beyond.

[6]  Christian Komusiewicz,et al.  Alternative Parameterizations for Cluster Editing , 2011, SOFSEM.

[7]  Guy Kindler,et al.  On non-approximability for quadratic programs , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[8]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[9]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[10]  Fedor V. Fomin,et al.  Exact exponential algorithms , 2013, CACM.

[11]  Erik D. Demaine,et al.  Bidimensionality: new connections between FPT algorithms and PTASs , 2005, SODA '05.

[12]  Michael R. Fellows,et al.  Clustering with partial information , 2008, Theor. Comput. Sci..

[13]  Sebastian Böcker,et al.  Exact Algorithms for Cluster Editing: Evaluation and Experiments , 2008, Algorithmica.

[14]  Fedor V. Fomin,et al.  Bidimensionality and EPTAS , 2010, SODA '11.

[15]  Peter Damaschke,et al.  Fixed-Parameter Enumerability of Cluster Editing and Related Problems , 2010, Theory of Computing Systems.

[16]  Rolf Niedermeier,et al.  Graph-Modeled Data Clustering: Exact Algorithms for Clique Generation , 2005, Theory of Computing Systems.

[17]  Jiong Guo A more effective linear kernelization for cluster editing , 2009, Theor. Comput. Sci..

[18]  Dániel Marx,et al.  Lower bounds based on the Exponential Time Hypothesis , 2011, Bull. EATCS.

[19]  Noga Alon,et al.  Fast Fast , 2009, ICALP.

[20]  Jianer Chen,et al.  Cluster Editing: Kernelization Based on Edge Cuts , 2010, Algorithmica.

[21]  Moses Charikar,et al.  Maximizing quadratic programs: extending Grothendieck's inequality , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[22]  Jayme Luiz Szwarcfiter,et al.  Applying Modular Decomposition to Parameterized Cluster Editing Problems , 2008, Theory of Computing Systems.

[23]  Michal Pilipczuk,et al.  Subexponential fixed-parameter tractability of cluster editing , 2011, ArXiv.

[24]  Avrim Blum,et al.  Correlation Clustering , 2004, Machine Learning.

[25]  Christian Komusiewicz,et al.  Graph-based data clustering with overlaps , 2009, Discret. Optim..

[26]  Christian Komusiewicz,et al.  Parameterized Algorithmics for Network Analysis: Clustering & Querying , 2011 .

[27]  Noga Alon,et al.  Quadratic forms on graphs , 2005, STOC '05.

[28]  Jianer Chen,et al.  A 2k kernel for the cluster editing problem , 2012, J. Comput. Syst. Sci..

[29]  Roded Sharan,et al.  Cluster graph modification problems , 2002, Discret. Appl. Math..

[30]  Sebastian Böcker,et al.  A Fixed-Parameter Approach for Weighted Cluster Editing , 2007, APBC.

[31]  Christian Komusiewicz,et al.  Cluster editing with locally bounded modifications , 2012, Discret. Appl. Math..

[32]  Sebastian Böcker,et al.  A Golden Ratio Parameterized Algorithm for Cluster Editing , 2011, IWOCA.

[33]  Nir Ailon,et al.  Aggregating inconsistent information: Ranking and clustering , 2008 .

[34]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[35]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on graphs of bounded-genus and H-minor-free graphs , 2004, SODA '04.

[36]  Fedor V. Fomin,et al.  Subexponential parameterized algorithm for minimum fill-in , 2011, SODA.

[37]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.

[38]  Ron Shamir,et al.  Clustering Gene Expression Patterns , 1999, J. Comput. Biol..

[39]  Christian Komusiewicz,et al.  Editing Graphs into Disjoint Unions of Dense Clusters , 2009, Algorithmica.

[40]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[41]  Christian Komusiewicz,et al.  A More Relaxed Model for Graph-Based Data Clustering: s-Plex Cluster Editing , 2010, SIAM J. Discret. Math..

[42]  Peter Damaschke,et al.  Even faster parameterized cluster deletion and cluster editing , 2011, Inf. Process. Lett..