Lie Symmetries, qualitative analysis and exact solutions of nonlinear Schr\

Using Lie group theory and canonical transformations, we construct explicit solutions of nonlinear Schrodinger equations with spatially inhomogeneous nonlinearities. We present the general theory, use it to study different examples and use the qualitative theory of dynamical systems to obtain some properties of these solutions.

[1]  Yuri S. Kivshar,et al.  Optical Solitons: From Fibers to Photonic Crystals , 2003 .

[2]  Josselin Garnier,et al.  Propagation of matter-wave solitons in periodic and random nonlinear potentials , 2005 .

[3]  A first integral for a class of time‐dependent anharmonic oscillators with multiple anharmonicities , 1992 .

[4]  Exact solution of the two-mode model of multicomponent Bose-Einstein condensates , 2003 .

[5]  Humberto Michinel,et al.  Controllable soliton emission from a Bose-Einstein condensate. , 2005, Physical review letters.

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  P. G. Kevrekidis,et al.  Matter-wave solitons of collisionally inhomogeneous condensates , 2005 .

[8]  G. Bluman,et al.  Symmetries and differential equations , 1989 .

[9]  J. L. Rosales,et al.  Non-linear Schrödinger equation coming from the action of the particle's gravitational field on the quantum potential , 1992 .

[10]  Hidetsugu Sakaguchi,et al.  Two-dimensional solitons in the Gross-Pitaevskii equation with spatially modulated nonlinearity. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Alicia V. Carpentier,et al.  Analysis of an atom laser based on the spatial control of the scattering length , 2006, cond-mat/0602582.

[12]  P. Leach An exact invariant for a class of time‐dependent anharmonic oscillators with cubic anharmonicity , 1981 .

[13]  Zhaosheng Feng,et al.  A qualitative study of the damped duffing equation and applications , 2006 .

[14]  M T Primatarowa,et al.  Interaction of solitons with extended nonlinear defects. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Mason A. Porter,et al.  Modulated amplitude waves in collisionally inhomogeneous Bose–Einstein condensates , 2006, nlin/0607009.

[16]  A. Carati,et al.  The nonlinear Schrödinger equation as a resonant normal form , 2001 .

[17]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[18]  Lie transformations, similarity reduction, and solutions for the nonlinear Madelung fluid equations with external potential , 1987 .

[19]  Edmund Pinney,et al.  The nonlinear differential equation ”+()+⁻³=0 , 1950 .

[20]  A. Sändig,et al.  Nonlinear Differential Equations , 1980 .

[21]  Juan Soler,et al.  ASYMPTOTIC BEHAVIOR TO THE 3-D SCHRÖDINGER/HARTREE–POISSON AND WIGNER–POISSON SYSTEMS , 2000 .

[22]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[23]  G. Miele,et al.  Thermal wave model for nonlinear longitudinal dynamics in particle accelerators , 1993 .

[24]  Josselin Garnier,et al.  Transmission of matter-wave solitons through nonlinear traps and barriers , 2006, cond-mat/0605261.

[25]  Bambi Hu,et al.  Management of Bose-Einstein condensates by a spatially periodic modulation of the atomic s-wave scattering length , 2007 .

[26]  O. Gendelman,et al.  Response regimes of integrable damped strongly nonlinear oscillator under impact periodic forcing , 2007 .

[27]  A. Davydov,et al.  Solitons in molecular systems , 1979 .

[28]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[29]  V. Zakharov,et al.  REVIEWS OF TOPICAL PROBLEMS: Spin-wave turbulence beyond the parametric excitation threshold , 1975 .

[30]  Juan Belmonte-Beitia,et al.  Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. , 2006, Physical review letters.

[31]  Alwyn C. Scott,et al.  Nonlinear Science: Emergence and Dynamics of Coherent Structures , 1999 .

[32]  J. Gibbon,et al.  Solitons and Nonlinear Wave Equations , 1982 .

[33]  Akira Hasegawa,et al.  Optical solitons in fibers , 1993, International Commission for Optics.

[34]  Gadi Fibich,et al.  Self-Focusing in the Perturbed and Unperturbed Nonlinear Schrödinger Equation in Critical Dimension , 1999, SIAM J. Appl. Math..

[35]  Franco Brezzi,et al.  The three-dimensional Wigner-Poisson problem: existence, uniqueness and approximation , 1991 .

[36]  小形 正男 A. S. Davydov 著, E. S. Kryachko 訳: Solitons in Molecular Systems, D. Reidel, Dordrecht and Boston, 1985, xviii+320ページ, 23×16cm, 17,000円 (Mathematics and Its Applications, Soviet Series). , 1987 .

[37]  Buryak,et al.  Stability criterion for stationary bound states of solitons with radiationless oscillating tails. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.