A generalization of irreducibility and diagonal dominance with applications to horizontal and vertical linear complementarity problems

Abstract In this paper, we generalize and analyze the concepts of diagonal dominance and irreducibility in the framework of column and row representative matrices of a set. Our analysis includes the definition of particular sets of M- and H-matrices. We also analyze the form that the matrices of the introduced irreducible sets must have and the implications of the obtained results on the solution of vertical and horizontal linear complementarity problems. In this context, we prove that the projected Jacobi and the projected Gauss-Seidel methods for horizontal linear complementarity problems converge when the matrices of the problem satisfy one of the introduced generalizations of strict diagonal dominance or of irreducible diagonal dominance. This extends current convergence results.

[1]  M. Fiedler,et al.  Some generalizations of positive definiteness and monotonicity , 1966 .

[2]  B. De Moor,et al.  The extended linear complementarity problem , 1995, Math. Program..

[3]  Zhong-Zhi Bai,et al.  On the Convergence of the Multisplitting Methods for the Linear Complementarity Problem , 1999, SIAM J. Matrix Anal. Appl..

[4]  Francesco Mezzadri,et al.  Splitting Methods for a Class of Horizontal Linear Complementarity Problems , 2018, Journal of Optimization Theory and Applications.

[5]  Liao Li-Zhi,et al.  A neural network for the linear complementarity problem , 1999 .

[6]  R. Sznajder,et al.  Generalizations of P0- and P-properties; extended vertical and horizontal linear complementarity problems , 1995 .

[7]  G. Dantzig,et al.  COMPLEMENTARY PIVOT THEORY OF MATHEMATICAL PROGRAMMING , 1968 .

[8]  Ikuyo Kaneko,et al.  A linear complementarity problem with an n by 2n “P”-matrix , 1978 .

[9]  M. Fiedler,et al.  On matrices with non-positive off-diagonal elements and positive principal minors , 1962 .

[10]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[11]  Francesco Mezzadri,et al.  On the solution of general absolute value equations , 2020, Appl. Math. Lett..

[12]  G. Dantzig,et al.  A generalization of the linear complementarity problem , 1970 .

[13]  M. Gowda,et al.  Reducing a Monotone Horizontal LCP to an LCP , 1995 .

[14]  Olvi L. Mangasarian,et al.  The Extended Linear Complementarity Problem , 1995, SIAM J. Matrix Anal. Appl..

[15]  Francesco Mezzadri,et al.  Modulus-based matrix splitting methods for horizontal linear complementarity problems , 2019, Numerical Algorithms.

[16]  Daniel Ralph,et al.  A stable homotopy approach to horizontal linear complementarity problems , 2002 .

[17]  Francesco Mezzadri Modulus-based synchronous multisplitting methods for solving horizontal linear complementarity problems on parallel computers , 2020, Numer. Linear Algebra Appl..

[18]  Hua Zheng,et al.  A two-step modulus-based matrix splitting iteration method for horizontal linear complementarity problems , 2020, Numerical Algorithms.

[19]  Hua Zheng,et al.  On convergence of the modulus-based matrix splitting iteration method for horizontal linear complementarity problems of H+-matrices , 2020, Appl. Math. Comput..

[20]  Yin Zhang,et al.  On the Convergence of a Class of Infeasible Interior-Point Methods for the Horizontal Linear Complementarity Problem , 1994, SIAM J. Optim..

[21]  R. Sznajder,et al.  The Generalized Order Linear Complementarity Problem , 1994, SIAM J. Matrix Anal. Appl..

[22]  M. Todd,et al.  Reducing horizontal linear complementarity problems , 1995 .

[23]  A. Willson A useful generalization of theP0 matrix concept , 1971 .