Regression on manifolds: Estimation of the exterior derivative
暂无分享,去创建一个
[1] W. Massy. Principal Components Regression in Exploratory Statistical Research , 1965 .
[2] R. R. Hocking. The analysis and selection of variables in linear regression , 1976 .
[3] D. Freedman,et al. Some Asymptotic Theory for the Bootstrap , 1981 .
[4] Generalized inverse matrices and their applications , 1982 .
[5] D. Sattinger,et al. Calculus on Manifolds , 1986 .
[6] I. Helland. ON THE STRUCTURE OF PARTIAL LEAST SQUARES REGRESSION , 1988 .
[7] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[8] Sabine Van Huffel,et al. Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.
[9] J. Friedman,et al. A Statistical View of Some Chemometrics Regression Tools , 1993 .
[10] J. Friedman,et al. [A Statistical View of Some Chemometrics Regression Tools]: Response , 1993 .
[11] J. Shao. Linear Model Selection by Cross-validation , 1993 .
[12] Jianqing Fan,et al. Nonparametric regression with errors in variables , 1993 .
[13] M. Wand,et al. Multivariate Locally Weighted Least Squares Regression , 1994 .
[14] C. Geyer. On the Asymptotics of Constrained $M$-Estimation , 1994 .
[15] Jianqing Fan,et al. Local polynomial modelling and its applications , 1994 .
[16] Jian-Hua Shao,et al. Bootstrap Sample Size in Nonregular Cases , 1994 .
[17] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[18] J. Shao. Bootstrap Model Selection , 1996 .
[19] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[20] Andrew Y. Ng,et al. Preventing "Overfitting" of Cross-Validation Data , 1997, ICML.
[21] G. Lugosi,et al. On Concentration-of-Measure Inequalities , 1998 .
[22] D. Ruppert,et al. Nonparametric regression in the presence of measurement error , 1999 .
[23] J. Tenenbaum,et al. A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.
[24] Wenjiang J. Fu. Ridge estimator in singulah oesiun with application to age-period-cohort analysis of disease rates , 2000 .
[25] Wenjiang J. Fu,et al. Asymptotics for lasso-type estimators , 2000 .
[26] A. E. Hoerl,et al. Ridge regression: biased estimation for nonorthogonal problems , 2000 .
[27] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[28] John M. Lee. Introduction to Smooth Manifolds , 2002 .
[29] Juha Reunanen,et al. Overfitting in Making Comparisons Between Variable Selection Methods , 2003, J. Mach. Learn. Res..
[30] Alfred O. Hero,et al. Geodesic entropic graphs for dimension and entropy estimation in manifold learning , 2004, IEEE Transactions on Signal Processing.
[31] Wenjiang J. Fu,et al. 2. A Methodological Comparison of Age-Period-Cohort Models: The Intrinsic Estimator and Conventional Generalized Linear Models , 2004 .
[32] Olivier Ledoit,et al. A well-conditioned estimator for large-dimensional covariance matrices , 2004 .
[33] Peter J. Bickel,et al. Maximum Likelihood Estimation of Intrinsic Dimension , 2004, NIPS.
[34] Matthias Hein. Intrinsic Dimensionality Estimation of Submanifolds in R , 2005 .
[35] Larry A. Wasserman,et al. Rodeo: Sparse Nonparametric Regression in High Dimensions , 2005, NIPS.
[36] Matthias Hein,et al. Intrinsic dimensionality estimation of submanifolds in Rd , 2005, ICML.
[37] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .
[38] R. Tibshirani,et al. Sparse Principal Component Analysis , 2006 .
[39] Mikhail Belkin,et al. Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..
[40] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[41] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[42] R. Bhatia. Perturbation Bounds for Matrix Eigenvalues , 2007 .
[43] Regina Y. Liu,et al. Complex datasets and inverse problems : tomography, networks and beyond , 2007, 0708.1130.
[44] R. Tibshirani,et al. PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.
[45] P. Bickel,et al. Local polynomial regression on unknown manifolds , 2007, 0708.0983.
[46] Noureddine El Karoui,et al. Operator norm consistent estimation of large-dimensional sparse covariance matrices , 2008, 0901.3220.
[47] Alon Zakai,et al. Manifold Learning: The Price of Normalization , 2008, J. Mach. Learn. Res..
[48] Glenn Fung,et al. On the Dangers of Cross-Validation. An Experimental Evaluation , 2008, SDM.
[49] N. Meinshausen,et al. Stability selection , 2008, 0809.2932.
[50] B. Nadler,et al. Determining the number of components in a factor model from limited noisy data , 2008 .
[51] K. Lange,et al. Coordinate descent algorithms for lasso penalized regression , 2008, 0803.3876.
[52] Wenjiang J. Fu. A Smoothing Cohort Model in Age–Period–Cohort Analysis With Applications to Homicide Arrest Rates and Lung Cancer Mortality Rates , 2008 .
[53] N. Meinshausen,et al. LASSO-TYPE RECOVERY OF SPARSE REPRESENTATIONS FOR HIGH-DIMENSIONAL DATA , 2008, 0806.0145.
[54] I. Johnstone,et al. Sparse Principal Components Analysis , 2009, 0901.4392.
[55] I. Johnstone,et al. On Consistency and Sparsity for Principal Components Analysis in High Dimensions , 2009, Journal of the American Statistical Association.
[56] B. Nadler. Finite sample approximation results for principal component analysis: a matrix perturbation approach , 2009, 0901.3245.
[57] Claire J. Tomlin,et al. Statistics for sparse, high-dimensional, and nonparametric system identification , 2009, 2009 IEEE International Conference on Robotics and Automation.
[58] Allen Y. Yang,et al. Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[59] Martin Andersson,et al. A comparison of nine PLS1 algorithms , 2009 .
[60] P. Bickel,et al. Covariance regularization by thresholding , 2009, 0901.3079.
[61] James Brown,et al. Nonparametric identification of regulatory interactions from spatial and temporal gene expression data , 2010, BMC Bioinformatics.
[62] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[63] Partha Niyogi,et al. Manifold regularization and semi-supervised learning: some theoretical analyses , 2013, J. Mach. Learn. Res..