Monte Carlo simulations in zeolites

In this short review, the applications of Monte Carlo simulations to the study of the adsorption and diffusion of hydrocarbons in zeolites are discussed. We focus on those systems for which the conventional molecular simulation techniques, molecular dynamics and Monte Carlo, are not sufficiently efficient. In particular, to simulate the adsorption and diffusion of long-chain hydrocarbons, novel Monte Carlo techniques have been developed. Here we discuss configurational-bias Monte Carlo (CBMC) and kinetic Monte Carlo (KMC). CBMC was developed to compute the thermodynamic properties. KMC is applied to compute transport properties. The use of these methods is illustrated with examples of technological importance.

[1]  Jörg Kärger,et al.  Diffusion in Zeolites and Other Microporous Solids , 1992 .

[2]  Christoph Dellago,et al.  Diffusion of isobutane in silicalite studied by transition path sampling , 2000 .

[3]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[4]  R. Krishna,et al.  The Maxwell-Stefan approach to mass transfer , 1997 .

[5]  Alexis T. Bell,et al.  Effect of topology and molecular occupancy on self-diffusion in lattice models of zeolites—Monte-Carlo simulations , 1998 .

[6]  S. Yashonath,et al.  Types of Dependence of Self-Diffusivity on Sorbate Concentration in Parameter Space: A Two-Dimensional Lattice Gas Study , 2000 .

[7]  Berend Smit,et al.  Computer simulations of vapor-liquid phase equilibria of n-alkanes , 1995 .

[8]  G. B. Suffritti,et al.  Structure and Dynamics of Zeolites Investigated by Molecular Dynamics. , 1997, Chemical reviews.

[9]  Berend Smit,et al.  Commensurate ‘freezing’ of alkanes in the channels of a zeolite , 1995 .

[10]  E. Webb,et al.  Intracrystalline Diffusion of Linear and Branched Alkanes in the Zeolites TON, EUO, and MFI , 1999 .

[11]  B. Smit,et al.  Exploiting entropy to separate alkane isomers , 2001 .

[12]  B. Smit,et al.  Simulation of adsorption and diffusion of hydrocarbons in zeolites , 1997 .

[13]  Rajamani Krishna,et al.  Improving the efficiency of the configurational-bias Monte Carlo algorithm , 1998 .

[14]  R. Snurr,et al.  Molecular simulations and NMR measurements of binary diffusion in zeolites , 1997 .

[15]  E. Maginn,et al.  Molecular Dynamics Simulations of Alkanes in the Zeolite Silicalite: Evidence for Resonant Diffusion Effects , 1997 .

[16]  B. Smit,et al.  Molecular Simulations of Adsorption Isotherms for Linear and Branched Alkanes and Their Mixtures in Silicalite , 1999 .

[17]  Scott M. Auerbach,et al.  Theory and simulation of jump dynamics, diffusion and phase equilibrium in nanopores , 2000 .

[18]  F. Kapteijn,et al.  Adsorption of Linear and Branched Alkanes in the Zeolite Silicalite-1 , 1998 .

[19]  J. Kärger,et al.  SIMULTANEOUS MEASUREMENT OF SELF- AND TRANSPORT DIFFUSIVITIES IN ZEOLITES , 1999 .

[20]  B. Smit,et al.  Simulating the Adsorption of Alkanes in Zeolites , 1994, Science.

[21]  D. Paschek,et al.  Diffusion of Binary Mixtures in Zeolites: Kinetic Monte Carlo versus Molecular Dynamics Simulations , 2001 .

[22]  Alexis T. Bell,et al.  Molecular dynamics studies of butane and hexane in silicalite , 1992 .

[23]  H. Pfeifer,et al.  N.m.r. self-diffusion studies in zeolite science and technology , 1987 .

[24]  M. Deem,et al.  A biased Monte Carlo scheme for zeolite structure solution , 1998, cond-mat/9809085.

[25]  K. Fichthorn,et al.  Accelerated molecular dynamics of infrequent events , 1999 .

[26]  S. Goodbody,et al.  Molecular simulation of methane and butane in silicalite , 1991 .

[27]  D. Paschek,et al.  Monte Carlo simulations of self- and transport-diffusivities of 2-methylhexane in silicalite , 2000 .