Biological pretreatment of lignocelluloses with white-rot fungi and its applications: A review

Lignocellulosic carbohydrates, i.e. cellulose and hemicellulose, have abundant potential as feedstock for production of biofuels and chemicals. However, these carbohydrates are generally infiltrated by lignin. Breakdown of the lignin barrier will alter lignocelluloses structures and make the carbohydrates accessible for more efficient bioconversion. White-rot fungi produce ligninolytic enzymes (lignin peroxidase, manganese peroxidase, and laccase) and efficiently mineralise lignin into CO2 and H2O. Biological pretreatment of lignocelluloses using white-rot fungi has been used for decades for ruminant feed, enzymatic hydrolysis, and biopulping. Application of white-rot fungi capabilities can offer environmentally friendly processes for utilising lignocelluloses over physical or chemical pretreatment. This paper reviews white-rot fungi, ligninolytic enzymes, the effect of biological pretreatment on biomass characteristics, and factors affecting biological pretreatment. Application of biological pretreatment for enzymatic hydrolysis, biofuels (bioethanol, biogas and pyrolysis), biopulping, biobleaching, animal feed, and enzymes production are also discussed.

[1]  T. Jeffries,et al.  Nutritional Regulation of Lignin Degradation by Phanerochaete chrysosporium , 1981, Applied and environmental microbiology.

[2]  T. Vares,et al.  Production of Manganese Peroxidase and Organic Acids and Mineralization of 14C-Labelled Lignin (14C-DHP) during Solid-State Fermentation of Wheat Straw with the White Rot Fungus Nematoloma frowardii , 1999, Applied and Environmental Microbiology.

[3]  A. Sanromán,et al.  Extracellular ligninolytic enzyme production by Phanerochaete chrysosporium in a new solid-state bioreactor , 2000, Biotechnology Letters.

[4]  U. Hölker,et al.  Solid-state fermentation--are there any biotechnological advantages? , 2005, Current opinion in microbiology.

[5]  P. Kersten Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[6]  M. Qin,et al.  Effect of bio-treatment on the lipophilic and hydrophilic extractives of wheat straw. , 2009, Bioresource technology.

[7]  John A. Heitmann,et al.  Feedstock pretreatment strategies for producing ethanol from wood, bark, and forest residues , 2008, BioResources.

[8]  A. Mayer,et al.  Laccase: new functions for an old enzyme. , 2002, Phytochemistry.

[9]  D. Guang Screening of White-rot Fungi , 2005 .

[10]  Wei Qiao,et al.  RETRACTED: Comparison of chemical and biological pretreatment of corn straw for biogas production by anaerobic digestion , 2011 .

[11]  M. Mcfarland,et al.  Removal of benzo(a)pyrene in soil composting systems amended with the white rot fungus Phanerochaete chrysosporium , 1995 .

[12]  T. Higuchi Microbial degradation of lignin: Role of lignin peroxidase, manganese peroxidase, and laccase , 2004, Proceedings of the Japan Academy. Series B, Physical and Biological Sciences.

[13]  P. Baldrian,et al.  Production of ligninolytic enzymes by litter-decomposing fungi and their ability to decolorize synthetic dyes , 2006 .

[14]  E. Sjöström,et al.  Wood Chemistry: Fundamentals and Applications , 1981 .

[15]  E. Agosin,et al.  Solid-state fermentation, lignin degradation and resulting digestibility of wheat straw fermented by selected white-rot fungi , 1985, Applied Microbiology and Biotechnology.

[16]  R. Piccaglia,et al.  Influence of oxygen and carbon dioxide on cell wall degradation by white-rot fungi , 1991 .

[17]  Amit Kumar,et al.  Influence of iron and copper nanoparticle powder on the production of lignocellulose degrading enzymes in the fungus Trametes versicolor. , 2010, Journal of hazardous materials.

[18]  G. Zeeman,et al.  Pretreatments to enhance the digestibility of lignocellulosic biomass. , 2009, Bioresource technology.

[19]  H. Wariishi,et al.  Determination of a catalytic tyrosine in Trametes cervina lignin peroxidase with chemical modification techniques , 2011, Biotechnology Letters.

[20]  G. Hill,et al.  Effect of enzyme or microbial treatment of bermudagrass forages before ensiling on cell wall composition, end products of silage fermentation and in situ digestion kinetics , 1999 .

[21]  A. Converse,et al.  Kinetics of enzymatic hydrolysis of lignocellulosic materials based on surface area of cellulose accessible to enzyme and enzyme adsorption on lignin and cellulose , 1990 .

[22]  C. Wan,et al.  Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. , 2010, Bioresource technology.

[23]  Rintu Banerjee,et al.  Optimization of laccase production using response surface methodology coupled with differential evolution. , 2011, New biotechnology.

[24]  K. Jensen,et al.  H2O2 recycling during oxidation of the arylglycerol beta-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase. , 1994, Biochemistry.

[25]  M. Taherzadeh,et al.  Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review , 2008, International journal of molecular sciences.

[26]  T. Eggen,et al.  Decontamination of aged creosote polluted soil: the influence of temperature, white rot fungus Pleurotus ostreatus, and pre-treatment , 1999 .

[27]  N. Durán,et al.  Potential applications of laccase in the food industry , 2002 .

[28]  T. Jeffries,et al.  Mn(II) Regulation of Lignin Peroxidases and Manganese-Dependent Peroxidases from Lignin-Degrading White Rot Fungi , 1990, Applied and environmental microbiology.

[29]  L. Levin,et al.  Comparative studies of loblolly pine biodegradation and enzyme production by Argentinean white rot fungi focused on biopulping processes , 2007 .

[30]  S. Camarero,et al.  Compositional changes of wheat lignin by a fungal peroxidase analyzed by pyrolysis-GC-MS , 2001 .

[31]  P. Gao,et al.  Characteristics and function of a low-molecular-weight compound with reductive activity from Phanerochaetechrysosporium in lignin biodegradation. , 2009, Bioresource technology.

[32]  M. Camassola,et al.  Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum , 2009 .

[33]  G. Huang,et al.  Composting of lead-contaminated solid waste with inocula of white-rot fungus. , 2007, Bioresource technology.

[34]  Chunyan Xu,et al.  Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis. , 2007, Journal of bioscience and bioengineering.

[35]  E. Kachlishvili,et al.  Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation , 2006 .

[36]  Y. Hadar,et al.  Effect of manganese on preferential degradation of lignin by Pleurotus ostreatus during solid-state fermentation , 1995, Applied and environmental microbiology.

[37]  A. Sethuraman,et al.  Biological delignification of plant components by the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus , 1996 .

[38]  Q. Nguyen,et al.  Microbial pretreatment of biomass , 2003, Applied biochemistry and biotechnology.

[39]  G. Zeng,et al.  Mycelial growth and solid-state fermentation of lignocellulosic waste by white-rot fungus Phanerochaete chrysosporium under lead stress. , 2010, Chemosphere.

[40]  S. R. Couto,et al.  Strategies for improving ligninolytic enzyme activities in semi-solid-state bioreactors , 2001 .

[41]  D. Kamra,et al.  Bioconversion of sugarcane bagasse with white rot fungi , 1988, Biotechnology Letters.

[42]  Sergio Riva,et al.  Laccases: blue enzymes for green chemistry. , 2006, Trends in biotechnology.

[43]  U. Temp,et al.  The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase , 1996, Applied and environmental microbiology.

[44]  P. Baldrian,et al.  Variability of laccase activity in the white-rot basidiomycetePleurotus ostreatus , 2008, Folia Microbiologica.

[45]  F. Périé,et al.  Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens , 1991, Applied and environmental microbiology.

[46]  Hongbo Yu,et al.  Effect of biopretreatment on thermogravimetric and chemical characteristics of corn stover by different white-rot fungi. , 2010, Bioresource technology.

[47]  C. Thurston The structure and function of fungal laccases , 1994 .

[48]  C. Mougin,et al.  Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. , 2002, Biochemistry.

[49]  D. Cullen,et al.  Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. , 2007, Fungal genetics and biology : FG & B.

[50]  S. R. Couto,et al.  Performance of a solid-state immersion bioreactor for ligninolytic enzyme production: evaluation of different operational variables , 2002 .

[51]  A. K. Puniya,et al.  Influence of carbon dioxide on lignin degradation and digestibility of lignocellulosics treated with Pleurotus sajor-caju , 1994 .

[52]  K. Kim,et al.  Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw , 2009, Biotechnology and bioengineering.

[53]  J. Dorado,et al.  Nitrogen-removal with protease as a method to improve the selective delignification of hemp stemwood by the white-rot fungus Bjerkandera sp. strain BOS55 , 2001, Applied Microbiology and Biotechnology.

[54]  E. Kachlishvili,et al.  Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes , 2008, Journal of Industrial Microbiology & Biotechnology.

[55]  E. Kachlishvili,et al.  Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. , 2009, Journal of biotechnology.

[56]  S. R. Couto,et al.  Application of solid-state fermentation to food industry—A review , 2006 .

[57]  K. Karunanandaa,et al.  Colonization of rice straw by white-rot fungi (Cyathus stercoreus): Effect on ruminal fermentation pattern, nitrogen metabolism, and fiber utilization during continuous culture , 1996 .

[58]  N. Reddy,et al.  Biofibers from agricultural byproducts for industrial applications. , 2005, Trends in biotechnology.

[59]  Xinle Liang,et al.  Purification and Characterization of a Versatile Peroxidase from Edible Mushroom Pleurotus eryngii , 2010 .

[60]  O. Andersen,et al.  Bioaugmentation of tar‐contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production , 2003, Environmental toxicology and chemistry.

[61]  Shilpa Gupte,et al.  Effect of different culture conditions and inducers on production of laccase by a basidiomycete fungal isolate Pleurotus ostreatus HP-1 under solid state fermentation. , 2009 .

[62]  I. Reid Solid-state fermentations for biological delignification , 1989 .

[63]  M. Hofrichter,et al.  Enhancement of bioconversion of high-molecular mass polycyclic aromatic hydrocarbons in contaminated non-sterile soil by litter-decomposing fungi , 2007, Biodegradation.

[64]  Hongbo Yu,et al.  Fungal treatment of cornstalks enhances the delignification and xylan loss during mild alkaline pretreatment and enzymatic digestibility of glucan. , 2010, Bioresource technology.

[65]  K. Piontek,et al.  Crystal Structure of a Laccase from the FungusTrametes versicolor at 1.90-Å Resolution Containing a Full Complement of Coppers* , 2002, The Journal of Biological Chemistry.

[66]  H. Call,et al.  History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym-process) , 1997 .

[67]  M. C. Vargas-García,et al.  The effect of aeration on the biotransformation of lignocellulosic wastes by white-rot fungi. , 2002, Bioresource technology.

[68]  O. Lanzalunga,et al.  Lignin peroxidase-catalyzed oxidation of nonphenolic trimeric lignin model compounds: fragmentation reactions in the intermediate radical cations. , 2003, Journal of Organic Chemistry.

[69]  C. Sánchez,et al.  Growth and laccase production by Pleurotus ostreatus in submerged and solid-state fermentation , 2008, Applied Microbiology and Biotechnology.

[70]  R. Kondo,et al.  In Vitro Bleaching of Hardwood Kraft Pulp by Extracellular Enzymes Excreted from White Rot Fungi in a Cultivation System Using a Membrane Filter , 1994, Applied and environmental microbiology.

[71]  C. A. Reddy,et al.  Demonstration of Laccase in the White Rot Basidiomycete Phanerochaete chrysosporium BKM-F1767 , 1995, Applied and environmental microbiology.

[72]  Sergei L Timofeevski,et al.  Addition of veratryl alcohol oxidase activity to manganese peroxidase by site-directed mutagenesis. , 1999, Biochemical and biophysical research communications.

[73]  R. Peralta,et al.  Copper improves the production of laccase by the white-rot fungus Pleurotus pulmonarius in solid state fermentation , 2006 .

[74]  V. Bisaria,et al.  Effect of seed culture on solid-state bioconversion of wheat straw by Phanerochaete chrysosporium for animal feed production. , 2002, Journal of bioscience and bioengineering.

[75]  Aline Zorzetto Lopes Gonçalves,et al.  Enzyme production by solid-state fermentation: Application to animal nutrition , 2008 .

[76]  Structure of native laccase from Trametes hirsuta at 1.8 A resolution. , 2009, Acta crystallographica. Section D, Biological crystallography.

[77]  Jun Yu,et al.  Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. , 2009, Bioresource technology.

[78]  G. Corrieu,et al.  Control of Lignin Peroxidase Production by Phanerochaete chrysosporium INA-12 by Temperature Shifting , 1988, Applied and environmental microbiology.

[79]  Y. Pang,et al.  Compositional changes of cottonseed hull substrate during P. ostreatus growth and the effects on the feeding value of the spent substrate. , 2001, Bioresource Technology.

[80]  Kazuhiro Hoshino,et al.  Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. , 2005, Journal of bioscience and bioengineering.

[81]  T. Volk,et al.  White-rot fungi demonstrate first biodegradation of phenolic resin. , 2006, Environmental science & technology.

[82]  N. Katagiri,et al.  Correlation of brightening with cumulative enzyme activity related to lignin biodegradation during biobleaching of kraft pulp by white rot fungi in the solid-state fermentation system , 1995, Applied and environmental microbiology.

[83]  In-Geol Choi,et al.  Biological pretreatment of rice straw by fermenting with Dichomitus squalens. , 2010, New biotechnology.

[84]  R. Blanchette Screening Wood Decayed by White Rot Fungi for Preferential Lignin Degradation , 1984, Applied and environmental microbiology.

[85]  R. Blanchette Degradation of the lignocellulose complex in wood , 1995 .

[86]  Ross E. Swaney,et al.  Recent Developments in Biopulping Technology at Madison, WI , 2002 .

[87]  H. Brunnert,et al.  Investigation of physical parameters important for the solid state fermentation of straw by white rot fungi , 1981, European journal of applied microbiology and biotechnology.

[88]  Hongbo Yu,et al.  EVALUATION OF BIOLOGICAL PRETREATMENT WITH WHITE ROT FUNGI FOR THE ENZYMATIC HYDROLYSIS OF BAMBOO CULMS , 2007 .

[89]  George H. Emert,et al.  Factors affecting the enzymatic hydrolysis of bagasse and rice straw , 1988 .

[90]  M. Holtzapple,et al.  Structural features affecting biomass enzymatic digestibility. , 2008, Bioresource technology.

[91]  Dominic W. S. Wong,et al.  Structure and Action Mechanism of Ligninolytic Enzymes , 2009, Applied biochemistry and biotechnology.

[92]  A. Hatakka,et al.  Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose , 1983, European journal of applied microbiology and biotechnology.

[93]  T. V. van Beek,et al.  Fungal bio-treatment of spruce wood with Trametes versicolor for pitch control: influence on extractive contents, pulping process parameters, paper quality and effluent toxicity. , 2007, Bioresource technology.

[94]  G. Sekaran,et al.  Solid state fermentation of Achras zapota lignocellulose by Phanerochaete chrysosporium. , 2006, Bioresource technology.

[95]  I. S. Melo,et al.  Ligninolytic enzyme production by Ganoderma spp. , 2005 .

[96]  M. Hofrichter Review: lignin conversion by manganese peroxidase (MnP) , 2002 .

[97]  Hongbo Yu,et al.  Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. , 2010, Bioresource technology.

[98]  D. Jalc,et al.  Effect of three strains of Pleurotus tuber-regium (Fr.) Sing. on chemical composition and rumen fermentation of wheat straw. , 1999, The Journal of general and applied microbiology.

[99]  S. Camarero,et al.  Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. , 2010, Biotechnology advances.

[100]  E. Nevo,et al.  Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species , 2006 .

[101]  T. Robinson,et al.  Remediation of Textile Dye Waste Water Using a White-Rot Fungus Bjerkandera adusta Through Solid-state Fermentation (SSF) , 2008, Applied biochemistry and biotechnology.

[102]  J. Baeza,et al.  Bioorganosolv pretreatments of P. radiata by a brown rot fungus (Gloephyllum trabeum) and ethanolysis. , 2010 .

[103]  T. Kirk,et al.  Fungal degradation of kraft lignin and lignin sulfonates prepared form synthetic 14C-lignins , 1977, Archives of Microbiology.

[104]  M. Gold,et al.  Nitrogen regulation of lignin peroxidase gene transcription , 1994, Applied and environmental microbiology.

[105]  J. Buswell,et al.  Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Lentinula (Lentinus) edodes , 1995 .

[106]  C. Dosoretz,et al.  Reactive Oxygen Species and Induction of Lignin Peroxidase in Phanerochaete chrysosporium , 2003, Applied and Environmental Microbiology.

[107]  Hongbo Yu,et al.  Evaluation of white-rot fungi-assisted alkaline/oxidative pretreatment of corn straw undergoing enzymatic hydrolysis by cellulase. , 2010, Journal of bioscience and bioengineering.

[108]  Shihua Wang,et al.  Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969 , 2009 .

[109]  A. Gutiérrez,et al.  Progress in biopulping of non-woody materials: Chemical, enzymatic and ultrastructural aspects of wheat straw delignification with ligninolytic fungi from the genus Pleurotus , 1994 .

[110]  M. Taniguchi,et al.  Effect of steam explosion pretreatment on treatment with Pleurotus ostreatus for the enzymatic hydrolysis of rice straw. , 2010, Journal of bioscience and bioengineering.

[111]  G. Bending,et al.  Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. , 2002, FEMS microbiology letters.

[112]  E. Nevo,et al.  Effect of copper and manganese ions on activities of laccase and peroxidases in three Pleurotus species grown on agricultural wastes , 2006, Applied biochemistry and biotechnology.

[113]  Shu-lin Chen,et al.  Biological pretreatment of corn stover by Irpex lacteus for enzymatic hydrolysis. , 2010, Journal of agricultural and food chemistry.

[114]  A. Matuszewska,et al.  Fungal laccase: properties and activity on lignin , 2001, Journal of basic microbiology.

[115]  D. S. Arora,et al.  Production of lignocellulolytic enzymes and enhancement of in vitro digestibility during solid state fermentation of wheat straw by Phlebia floridensis. , 2010, Bioresource technology.

[116]  Gloria Caminal,et al.  Degradation of naproxen and carbamazepine in spiked sludge by slurry and solid-phase Trametes versicolor systems. , 2010, Bioresource technology.

[117]  E. Galindo,et al.  Increasing Pleurotus ostreatus laccase production by culture medium optimization and copper/lignin synergistic induction , 2011, Journal of Industrial Microbiology & Biotechnology.

[118]  D. Cullen,et al.  Role of fungal peroxidases in biological ligninolysis. , 2008, Current opinion in plant biology.

[119]  J. Buswell,et al.  Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Pleurotus sajor‐caju , 1997 .

[120]  M. Kuwahara,et al.  Separation and characterization of two extracelluar H2O2‐dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium , 1984 .

[121]  A. K. Puniya,et al.  Studies on the effect of particle size on solid-state fermentation of sugarcane bagasse into animal feed using white-rot fungi , 1995 .

[122]  M. Gold,et al.  Manganese peroxidase gene transcription in Phanerochaete chrysosporium: activation by manganese , 1991, Journal of bacteriology.

[123]  Hongzhang Chen,et al.  Solid-state production of biopulp by Phanerochaete chrysosporium using steam-exploded wheat straw as substrate. , 2002, Bioresource technology.

[125]  Annele Hatakka,et al.  Biodegradation of Lignin , 2001 .

[126]  M. Holtzapple,et al.  Fundamental factors affecting biomass enzymatic reactivity , 2000, Applied biochemistry and biotechnology.

[127]  P. Baldrian,et al.  Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese, lead and zinc. , 2005, Research in microbiology.

[128]  Masaaki Kuwahara,et al.  Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. , 2003, Journal of biotechnology.

[129]  U. Hölker,et al.  Biotechnological advantages of laboratory-scale solid-state fermentation with fungi , 2004, Applied Microbiology and Biotechnology.

[130]  D. Cullen,et al.  9 Enzymology and Molecular Genetics of Wood Degradation by White-Rot Fungi , 1998 .

[131]  Shu-lin Chen,et al.  Biological pretreatment of wheat straw by Phanerochaete chrysosporium supplemented with inorganic salts. , 2011, Bioresource technology.

[132]  J. Glenn,et al.  Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. , 1986, Archives of biochemistry and biophysics.

[133]  Y. Hadar,et al.  Utilization of lignocellulosic waste by the edible mushroom, Pleurotus , 1992, Biodegradation.

[134]  J. Field,et al.  Stimulation of Ligninolytic Peroxidase Activity by Nitrogen Nutrients in the White Rot Fungus Bjerkandera sp. Strain BOS55 , 1993, Applied and environmental microbiology.

[135]  K. Hammel,,et al.  Fungal Biodegradation of Lignocelluloses , 2011 .

[136]  Shilpa Gupte,et al.  Biodegradation of Fluoranthene by Basidiomycetes Fungal Isolate Pleurotus Ostreatus HP-1 , 2009, Applied biochemistry and biotechnology.

[137]  R. Farrell,et al.  Enzymatic "combustion": the microbial degradation of lignin. , 1987, Annual review of microbiology.

[138]  Rui M. F. Bezerra,et al.  Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. , 2010, Bioresource technology.

[139]  R. Cohen,et al.  Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus , 2002, Applied Microbiology and Biotechnology.

[140]  B. Dale,et al.  Global potential bioethanol production from wasted crops and crop residues , 2004 .

[141]  Jiachao Zhang,et al.  Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting. , 2010, Bioresource technology.

[142]  Carmen Sánchez,et al.  Lignocellulosic residues: biodegradation and bioconversion by fungi. , 2009, Biotechnology advances.

[143]  María Jesús Martínez,et al.  Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system , 2004 .

[144]  A. Ferraz,et al.  Technological advances and mechanistic basis for fungal biopulping , 2008 .

[145]  P. Baldrian,et al.  Temperature affects the production, activity and stability of ligninolytic enzymes inPleurotus ostreatus andTrametes versicolor , 2008, Folia Microbiologica.

[146]  T. Poulos,et al.  Ultrahigh (0.93A) resolution structure of manganese peroxidase from Phanerochaete chrysosporium: implications for the catalytic mechanism. , 2010, Journal of inorganic biochemistry.

[147]  Ángel T. Martínez,et al.  Chemical transformation of wheat straw constituents after solid-state fermentation with selected lignocellulose-degrading fungi , 1991 .

[148]  S. Rodríguez Couto,et al.  Industrial and biotechnological applications of laccases: a review. , 2006, Biotechnology advances.

[149]  J. Field,et al.  Physiological Role of Chlorinated Aryl Alcohols Biosynthesized De Novo by the White Rot Fungus Bjerkandera sp. Strain BOS55 , 1994, Applied and environmental microbiology.

[150]  Carlos Regalado,et al.  Biotechnological applications of peroxidases , 2004, Phytochemistry Reviews.

[151]  Hou‐min Chang,et al.  Potential applications of bio-ligninolytic systems , 1981 .

[152]  M. Tien,et al.  Engineering of a manganese-binding site in lignin peroxidase isozyme H8 from Phanerochaete chrysosporium. , 2001, Biochemical and biophysical research communications.

[153]  A. E. González,et al.  Bioconversion of sugar cane crop residues with white-rot fungiPleurotus sp. , 1992, World journal of microbiology & biotechnology.

[154]  S. Camarero,et al.  Manganese-Mediated Lignin Degradation by Pleurotus pulmonarius , 1996, Applied and environmental microbiology.

[155]  J. Gomes,et al.  Operating conditions of a 200l staged vertical reactor for bioconversion of wheat straw by Phanerochaete chrysosporium. , 2008, Bioresource technology.

[156]  T. Kirk,et al.  Laccase component of the Ceriporiopsis subvermispora lignin-degrading system , 1995, Applied and environmental microbiology.

[157]  K. Gwak,et al.  Biological pretreatment of softwood Pinus densiflora by three white rot fungi. , 2007, Journal of microbiology.

[158]  Ratna R. Sharma-Shivappa,et al.  Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. , 2008, Bioresource technology.

[159]  C. Cameselle,et al.  Laccase production in semi-solid cultures of Phanerochaete chrysosporium , 1997, Biotechnology Letters.

[160]  J. Zeikus,et al.  Influence of culture parameters on lignin metabolism byPhanerochaete chrysosporium , 1978, Archives of Microbiology.

[161]  C. Hongzhang,et al.  Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. , 2001, Bioresource technology.

[162]  P. Bajpai Biological Bleaching of Chemical Pulps , 2004, Critical reviews in biotechnology.

[163]  Hongbo Yu,et al.  The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. , 2009, Bioresource technology.

[164]  M. Gold,et al.  Reverse Transcription-PCR Analysis of the Regulation of the Manganese Peroxidase Gene Family , 1998, Applied and Environmental Microbiology.

[165]  Masashi Watanabe,et al.  Influence of soil properties on the biodegradation of 1,3,6,8-tetrachlorodibenzo-p-dioxin and fungal treatment of contaminated paddy soil by white rot fungus Phlebia brevispora. , 2009, Chemosphere.

[166]  Abdul Latif Ahmad,et al.  Production of xylose from oil palm empty fruit bunch fiber using sulfuric acid , 2006 .

[167]  M. Ciani,et al.  Effect of Phanerochaete chrysosporium inoculation during maturation of co-composted agricultural wastes mixed with olive mill wastewater. , 2009, Waste management.

[168]  C. Evans,et al.  Hydrogen-peroxide-producing system ofPleurotus eryngii involving the extracellular enzyme aryl-alcohol oxidase , 1994, Applied Microbiology and Biotechnology.

[169]  G. Sannia,et al.  Copper Induction of Laccase Isoenzymes in the Ligninolytic Fungus Pleurotus ostreatus , 2000, Applied and Environmental Microbiology.

[170]  J. Field,et al.  Increasing ligninolytic enzyme activities in several white-rot basidiomycetes by nitrogen-sufficient media. , 1995 .