暂无分享,去创建一个
[1] Cosmin Safta,et al. Uncertainty Quantification given Discontinuous Model Response and a Limited Number of Model Runs , 2012, SIAM J. Sci. Comput..
[2] Erich Novak,et al. High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..
[3] David J. C. MacKay,et al. Information-Based Objective Functions for Active Data Selection , 1992, Neural Computation.
[4] Luc Pronzato,et al. Spectral Approximation of the IMSE Criterion for Optimal Designs in Kernel-Based Interpolation Models , 2014, SIAM/ASA J. Uncertain. Quantification.
[5] Kazuomi Yamamoto,et al. Efficient Optimization Design Method Using Kriging Model , 2005 .
[6] Jon Lee. Maximum entropy sampling , 2001 .
[7] Jürgen Pilz,et al. Spatial sampling design and covariance-robust minimax prediction based on convex design ideas , 2010 .
[8] Toby J. Mitchell,et al. An Algorithm for the Construction of “D-Optimal” Experimental Designs , 2000, Technometrics.
[9] Andreas Krause,et al. Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..
[10] Radford M. Neal. Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification , 1997, physics/9701026.
[11] Sonja Kuhnt,et al. Design and analysis of computer experiments , 2010 .
[12] N. Sivakumar,et al. On cardinal interpolation by Gaussian radial-basis functions: Properties of fundamental functions and estimates for Lebesgue constants , 1999 .
[13] David M. Steinberg,et al. Optimal designs for Gaussian process models |via spectral decomposition , 2014 .
[14] Thomas Gerstner,et al. Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.
[15] David M. Steinberg,et al. Data Analytic Tools for Understanding Random Field Regression Models , 2004, Technometrics.
[16] Ryan Lekivetz,et al. Fast Flexible Space‐Filling Designs for Nonrectangular Regions , 2015, Qual. Reliab. Eng. Int..
[17] D. Xiu. Fast numerical methods for stochastic computations: A review , 2009 .
[18] Maurice Queyranne,et al. An Exact Algorithm for Maximum Entropy Sampling , 1995, Oper. Res..
[19] Cosmin Safta,et al. Uncertainty Quantification in the Presence of Limited Climate Model Data with Discontinuities , 2009, 2009 IEEE International Conference on Data Mining Workshops.
[20] Valerii V. Fedorov,et al. Optimum Design for Correlated Fields via Covariance Kernel Expansions , 2007 .
[21] Andrew Corrigan,et al. Kernel-Based Meshless Methods , 2009 .
[22] Robert Haining,et al. Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .
[23] Jerome Sacks,et al. Designs for Computer Experiments , 1989 .
[24] Alex A. Gorodetsky,et al. Efficient Localization of Discontinuities in Complex Computational Simulations , 2014, SIAM J. Sci. Comput..
[25] Holger Wendland,et al. Near-optimal data-independent point locations for radial basis function interpolation , 2005, Adv. Comput. Math..
[26] Michael S. Eldred,et al. Sparse Pseudospectral Approximation Method , 2011, 1109.2936.
[27] Eric Jones,et al. SciPy: Open Source Scientific Tools for Python , 2001 .
[28] S. Gupta,et al. Statistical decision theory and related topics IV , 1988 .
[29] G. Fasshauer. Positive definite kernels: past, present and future , 2011 .
[30] Werner G. Müller,et al. A comparison of spatial design methods for correlated observations , 2005 .
[31] Valerii Fedorov,et al. 16 Design of spatial experiments: Model fitting and prediction , 1996 .
[32] Alan Genz,et al. Testing multidimensional integration routines , 1984 .
[33] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[34] David A. Cohn,et al. Neural Network Exploration Using Optimal Experiment Design , 1993, NIPS.
[35] Anthony C. Atkinson,et al. Optimum Experimental Designs, with SAS , 2007 .
[36] A. O'Hagan,et al. Curve Fitting and Optimal Design for Prediction , 1978 .
[37] Chris Bailey-Kellogg,et al. Gaussian Processes for Active Data Mining of Spatial Aggregates , 2005, SDM.
[38] Klaus Obermayer,et al. Gaussian process regression: active data selection and test point rejection , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.
[39] Youssef M. Marzouk,et al. Adaptive Smolyak Pseudospectral Approximations , 2012, SIAM J. Sci. Comput..
[40] Serge Guillas,et al. Sequential Design with Mutual Information for Computer Experiments (MICE): Emulation of a Tsunami Model , 2014, SIAM/ASA J. Uncertain. Quantification.
[41] Mike Rees,et al. 5. Statistics for Spatial Data , 1993 .
[42] Jason L. Loeppky,et al. Batch sequential designs for computer experiments , 2010 .
[43] Robert Schaback,et al. Stability of kernel-based interpolation , 2010, Adv. Comput. Math..
[44] Thomas J. Santner,et al. The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.
[45] Dongbin Xiu,et al. Characterization of discontinuities in high-dimensional stochastic problems on adaptive sparse grids , 2011, J. Comput. Phys..
[46] Yuan Yao,et al. Mercer's Theorem, Feature Maps, and Smoothing , 2006, COLT.
[47] V. A. Menegatto,et al. An extension of Mercer’s theory to Lp , 2012 .
[48] E. B. Christoffel,et al. Über die Gaußische Quadratur und eine Verallgemeinerung derselben. , 1858 .
[49] Klaus Ritter,et al. Bayesian numerical analysis , 2000 .
[50] Tao Wang,et al. Automatic Gait Optimization with Gaussian Process Regression , 2007, IJCAI.
[51] G. Darboux,et al. Mémoire sur l'approximation des fonctions de très-grands nombres, et sur une classe étendue de développements en série. , 1878 .
[52] E FasshauerG. Positive definite kernels: past, present and future , 2011 .
[53] Toby J. Mitchell,et al. An algorithm for the construction of “ D -optimal” experimental designs , 2000 .
[54] Daniel W. Apley,et al. Local Gaussian Process Approximation for Large Computer Experiments , 2013, 1303.0383.
[55] Alexander Shapiro,et al. Asymptotic analysis of stochastic programs , 1991, Ann. Oper. Res..
[56] Carl E. Rasmussen,et al. Active Learning of Model Evidence Using Bayesian Quadrature , 2012, NIPS.
[57] S. De Marchi,et al. On Optimal Center Locations for Radial Basis Function Interpolation: Computational Aspects , 2022 .
[58] T. J. Mitchell,et al. Bayesian Prediction of Deterministic Functions, with Applications to the Design and Analysis of Computer Experiments , 1991 .
[59] J. Buescu. Positive integral operators in unbounded domains , 2004 .