Mercer kernels and integrated variance experimental design: connections between Gaussian process regression and polynomial approximation

This paper examines experimental design procedures used to develop surrogates of computational models, exploring the interplay between experimental designs and approximation algorithms. We focus on two widely used approximation approaches, Gaussian process (GP) regression and non-intrusive polynomial approximation. First, we introduce algorithms for minimizing a posterior integrated variance (IVAR) design criterion for GP regression. Our formulation treats design as a continuous optimization problem that can be solved with gradient-based methods on complex input domains, without resorting to greedy approximations. We show that minimizing IVAR in this way yields point sets with good interpolation properties, and that it enables more accurate GP regression than designs based on entropy minimization or mutual information maximization. Second, using a Mercer kernel/eigenfunction perspective on GP regression, we identify conditions under which GP regression coincides with pseudospectral polynomial approximation. Departures from these conditions can be understood as changes either to the kernel or to the experimental design itself. We then show how IVAR-optimal designs, while sacrificing discrete orthogonality of the kernel eigenfunctions, can yield lower approximation error than orthogonalizing point sets. Finally, we compare the performance of adaptive Gaussian process regression and adaptive pseudospectral approximation for several classes of target functions, identifying features that are favorable to the GP + IVAR approach.

[1]  Cosmin Safta,et al.  Uncertainty Quantification given Discontinuous Model Response and a Limited Number of Model Runs , 2012, SIAM J. Sci. Comput..

[2]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[3]  David J. C. MacKay,et al.  Information-Based Objective Functions for Active Data Selection , 1992, Neural Computation.

[4]  Luc Pronzato,et al.  Spectral Approximation of the IMSE Criterion for Optimal Designs in Kernel-Based Interpolation Models , 2014, SIAM/ASA J. Uncertain. Quantification.

[5]  Kazuomi Yamamoto,et al.  Efficient Optimization Design Method Using Kriging Model , 2005 .

[6]  Jon Lee Maximum entropy sampling , 2001 .

[7]  Jürgen Pilz,et al.  Spatial sampling design and covariance-robust minimax prediction based on convex design ideas , 2010 .

[8]  Toby J. Mitchell,et al.  An Algorithm for the Construction of “D-Optimal” Experimental Designs , 2000, Technometrics.

[9]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[10]  Radford M. Neal Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification , 1997, physics/9701026.

[11]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[12]  N. Sivakumar,et al.  On cardinal interpolation by Gaussian radial-basis functions: Properties of fundamental functions and estimates for Lebesgue constants , 1999 .

[13]  David M. Steinberg,et al.  Optimal designs for Gaussian process models |via spectral decomposition , 2014 .

[14]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[15]  David M. Steinberg,et al.  Data Analytic Tools for Understanding Random Field Regression Models , 2004, Technometrics.

[16]  Ryan Lekivetz,et al.  Fast Flexible Space‐Filling Designs for Nonrectangular Regions , 2015, Qual. Reliab. Eng. Int..

[17]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[18]  Maurice Queyranne,et al.  An Exact Algorithm for Maximum Entropy Sampling , 1995, Oper. Res..

[19]  Cosmin Safta,et al.  Uncertainty Quantification in the Presence of Limited Climate Model Data with Discontinuities , 2009, 2009 IEEE International Conference on Data Mining Workshops.

[20]  Valerii V. Fedorov,et al.  Optimum Design for Correlated Fields via Covariance Kernel Expansions , 2007 .

[21]  Andrew Corrigan,et al.  Kernel-Based Meshless Methods , 2009 .

[22]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[23]  Jerome Sacks,et al.  Designs for Computer Experiments , 1989 .

[24]  Alex A. Gorodetsky,et al.  Efficient Localization of Discontinuities in Complex Computational Simulations , 2014, SIAM J. Sci. Comput..

[25]  Holger Wendland,et al.  Near-optimal data-independent point locations for radial basis function interpolation , 2005, Adv. Comput. Math..

[26]  Michael S. Eldred,et al.  Sparse Pseudospectral Approximation Method , 2011, 1109.2936.

[27]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[28]  S. Gupta,et al.  Statistical decision theory and related topics IV , 1988 .

[29]  G. Fasshauer Positive definite kernels: past, present and future , 2011 .

[30]  Werner G. Müller,et al.  A comparison of spatial design methods for correlated observations , 2005 .

[31]  Valerii Fedorov,et al.  16 Design of spatial experiments: Model fitting and prediction , 1996 .

[32]  Alan Genz,et al.  Testing multidimensional integration routines , 1984 .

[33]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[34]  David A. Cohn,et al.  Neural Network Exploration Using Optimal Experiment Design , 1993, NIPS.

[35]  Anthony C. Atkinson,et al.  Optimum Experimental Designs, with SAS , 2007 .

[36]  A. O'Hagan,et al.  Curve Fitting and Optimal Design for Prediction , 1978 .

[37]  Chris Bailey-Kellogg,et al.  Gaussian Processes for Active Data Mining of Spatial Aggregates , 2005, SDM.

[38]  Klaus Obermayer,et al.  Gaussian process regression: active data selection and test point rejection , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[39]  Youssef M. Marzouk,et al.  Adaptive Smolyak Pseudospectral Approximations , 2012, SIAM J. Sci. Comput..

[40]  Serge Guillas,et al.  Sequential Design with Mutual Information for Computer Experiments (MICE): Emulation of a Tsunami Model , 2014, SIAM/ASA J. Uncertain. Quantification.

[41]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[42]  Jason L. Loeppky,et al.  Batch sequential designs for computer experiments , 2010 .

[43]  Robert Schaback,et al.  Stability of kernel-based interpolation , 2010, Adv. Comput. Math..

[44]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[45]  Dongbin Xiu,et al.  Characterization of discontinuities in high-dimensional stochastic problems on adaptive sparse grids , 2011, J. Comput. Phys..

[46]  Yuan Yao,et al.  Mercer's Theorem, Feature Maps, and Smoothing , 2006, COLT.

[47]  V. A. Menegatto,et al.  An extension of Mercer’s theory to Lp , 2012 .

[48]  E. B. Christoffel,et al.  Über die Gaußische Quadratur und eine Verallgemeinerung derselben. , 1858 .

[49]  Klaus Ritter,et al.  Bayesian numerical analysis , 2000 .

[50]  Tao Wang,et al.  Automatic Gait Optimization with Gaussian Process Regression , 2007, IJCAI.

[51]  G. Darboux,et al.  Mémoire sur l'approximation des fonctions de très-grands nombres, et sur une classe étendue de développements en série. , 1878 .

[52]  E FasshauerG Positive definite kernels: past, present and future , 2011 .

[53]  Toby J. Mitchell,et al.  An algorithm for the construction of “ D -optimal” experimental designs , 2000 .

[54]  Daniel W. Apley,et al.  Local Gaussian Process Approximation for Large Computer Experiments , 2013, 1303.0383.

[55]  Alexander Shapiro,et al.  Asymptotic analysis of stochastic programs , 1991, Ann. Oper. Res..

[56]  Carl E. Rasmussen,et al.  Active Learning of Model Evidence Using Bayesian Quadrature , 2012, NIPS.

[57]  S. De Marchi,et al.  On Optimal Center Locations for Radial Basis Function Interpolation: Computational Aspects , 2022 .

[58]  T. J. Mitchell,et al.  Bayesian Prediction of Deterministic Functions, with Applications to the Design and Analysis of Computer Experiments , 1991 .

[59]  J. Buescu Positive integral operators in unbounded domains , 2004 .