Infinite-dimensional Categorical Quantum Mechanics

We use non-standard analysis to define a category $^\star\!\operatorname{Hilb}$ suitable for categorical quantum mechanics in arbitrary separable Hilbert spaces, and we show that standard bounded operators can be suitably embedded in it. We show the existence of unital special commutative $\dagger$-Frobenius algebras, and we conclude $^\star\!\operatorname{Hilb}$ to be compact closed, with partial traces and a Hilbert-Schmidt inner product on morphisms. We exemplify our techniques on the textbook case of 1-dimensional wavefunctions with periodic boundary conditions: we show the momentum and position observables to be well defined, and to give rise to a strongly complementary pair of unital commutative $\dagger$-Frobenius algebras.

[1]  Jamie Vicary Topological Structure of Quantum Algorithms , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[2]  A. Robinson Non-standard analysis , 1966 .

[3]  B. Coecke,et al.  Classical and quantum structuralism , 2009, 0904.1997.

[4]  S. Gudder Toward a rigorous quantum field theory , 1994 .

[5]  S. Gogioso Categorical Semantics for Schr\"odinger's Equation , 2015, 1501.06489.

[6]  An approach to nonstandard quantum mechanics , 2004, math-ph/0612082.

[7]  Stefano Gogioso Categorical Semantics for Schrödinger ’ s Equation , 2015 .

[8]  Dov M. Gabbay,et al.  Handbook of Quantum Logic and Quantum Structures: Quantum Logic , 2009 .

[9]  Aleks Kissinger,et al.  Pictures of processes : automated graph rewriting for monoidal categories and applications to quantum computing , 2012, ArXiv.

[10]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[11]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, LICS 2004.

[12]  Masanao Ozawa,et al.  Unitary representations of the hyperfinite Heisenberg group and the logical extension methods in physics , 1993 .

[13]  W. Ambrose Structure theorems for a special class of Banach algebras , 1945 .

[14]  Samson Abramsky,et al.  H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics , 2010, 1011.6123.

[15]  M. O. Farrukh Application of nonstandard analysis to quantum mechanics , 1975 .

[16]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.