Behavioral demand modulates object category representation in the inferior temporal cortex.

Visual object categorization is a critical task in our daily life. Many studies have explored category representation in the inferior temporal (IT) cortex at the level of single neurons and population. However, it is not clear how behavioral demands modulate this category representation. Here, we recorded from the IT single neurons in monkeys performing two different tasks with identical visual stimuli: passive fixation and body/object categorization. We found that category selectivity of the IT neurons was improved in the categorization compared with the passive task where reward was not contingent on image category. The category improvement was the result of larger rate enhancement for the preferred category and smaller response variability for both preferred and nonpreferred categories. These specific modulations in the responses of IT category neurons enhanced signal-to-noise ratio of the neural responses to discriminate better between the preferred and nonpreferred categories. Our results provide new insight into the adaptable category representation in the IT cortex, which depends on behavioral demands.

[1]  H. Esteky,et al.  Neural Representation of Ambiguous Visual Objects in the Inferior Temporal Cortex , 2013, PloS one.

[2]  T. Moore,et al.  CONTROL OF VISUAL CORTICAL SIGNALS BY PREFRONTAL DOPAMINE , 2011, Nature.

[3]  R. Desimone,et al.  A backward progression of attentional effects in the ventral stream , 2009, Proceedings of the National Academy of Sciences.

[4]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[5]  Jude F. Mitchell,et al.  Spatial Attention Decorrelates Intrinsic Activity Fluctuations in Macaque Area V4 , 2009, Neuron.

[6]  R. Tootell,et al.  An anterior temporal face patch in human cortex, predicted by macaque maps , 2009, Proceedings of the National Academy of Sciences.

[7]  David J. Freedman,et al.  Dynamic population coding of category information in inferior temporal and prefrontal cortex. , 2008, Journal of neurophysiology.

[8]  R. Vogels,et al.  Effects of category learning on the stimulus selectivity of macaque inferior temporal neurons. , 2008, Learning & memory.

[9]  Nikolai Axmacher,et al.  Interactions between Medial Temporal Lobe, Prefrontal Cortex, and Inferior Temporal Regions during Visual Working Memory: A Combined Intracranial EEG and Functional Magnetic Resonance Imaging Study , 2008, The Journal of Neuroscience.

[10]  David L. Sheinberg,et al.  Effects of temporal context and temporal expectancy on neural activity in inferior temporal cortex , 2008, Neuropsychologia.

[11]  Jude F. Mitchell,et al.  Differential Attention-Dependent Response Modulation across Cell Classes in Macaque Visual Area V4 , 2007, Neuron.

[12]  Keiji Tanaka,et al.  Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. , 2007, Journal of neurophysiology.

[13]  Keiji Tanaka,et al.  Neuronal Responses to Object Images in the Macaque Inferotemporal Cortex at Different Stimulus Discrimination Levels , 2006, The Journal of Neuroscience.

[14]  R. Kiani,et al.  Microstimulation of inferotemporal cortex influences face categorization , 2006, Nature.

[15]  Jonathan D. Wallis,et al.  A Comparison of Abstract Rules in the Prefrontal Cortex, Premotor Cortex, Inferior Temporal Cortex, and Striatum , 2006, Journal of Cognitive Neuroscience.

[16]  M. Riesenhuber,et al.  Experience-dependent sharpening of visual shape selectivity in inferior temporal cortex. , 2005, Cerebral cortex.

[17]  Tomaso Poggio,et al.  Fast Readout of Object Identity from Macaque Inferior Temporal Cortex , 2005, Science.

[18]  C. Gross,et al.  Representations of faces and body parts in macaque temporal cortex: a functional MRI study. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. Hochstein,et al.  The reverse hierarchy theory of visual perceptual learning , 2004, Trends in Cognitive Sciences.

[20]  N. Sigala,et al.  Visual categorization and the inferior temporal cortex , 2004, Behavioural Brain Research.

[21]  Doris Y. Tsao,et al.  Faces and objects in macaque cerebral cortex , 2003, Nature Neuroscience.

[22]  N. Sigala,et al.  Visual categorization shapes feature selectivity in the primate temporal cortex , 2002, Nature.

[23]  Barry J. Richmond,et al.  Consistency of Encoding in Monkey Visual Cortex , 2001, The Journal of Neuroscience.

[24]  N. Kanwisher,et al.  The Human Body , 2001 .

[25]  H. Tamura,et al.  Visual response properties of cells in the ventral and dorsal parts of the macaque inferotemporal cortex. , 2001, Cerebral cortex.

[26]  Keiji Tanaka,et al.  Connections between Anterior Inferotemporal Cortex and Superior Temporal Sulcus Regions in the Macaque Monkey , 2000, The Journal of Neuroscience.

[27]  Kenji Kawano,et al.  Global and fine information coded by single neurons in the temporal visual cortex , 1999, Nature.

[28]  Carrie J. McAdams,et al.  Effects of Attention on the Reliability of Individual Neurons in Monkey Visual Cortex , 1999, Neuron.

[29]  R. Vogels Categorization of complex visual images by rhesus monkeys. Part 2: single‐cell study , 1999, The European journal of neuroscience.

[30]  Keiji Tanaka,et al.  Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. , 1998, Journal of neurophysiology.

[31]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[32]  K. Tanaka,et al.  Divergent Projections from the Anterior Inferotemporal Area TE to the Perirhinal and Entorhinal Cortices in the Macaque Monkey , 1996, The Journal of Neuroscience.

[33]  G. Orban,et al.  How task-related are the responses of inferior temporal neurons? , 1995, Visual Neuroscience.

[34]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. , 1994, Cerebral cortex.

[35]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[36]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[37]  T. Sato,et al.  Effects of attention and stimulus interaction on visual responses of inferior temporal neurons in macaque. , 1988, Journal of neurophysiology.

[38]  H. Sakai,et al.  Enhancement of inferior temporal neurons during visual discrimination. , 1987, Journal of neurophysiology.

[39]  W. J. Daunicht,et al.  An on-line spike form discriminator for extracellular recordings based on an analog correlation technique , 1986, Journal of Neuroscience Methods.

[40]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  J. Fuster,et al.  Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. , 1981, Science.

[42]  H. Komatsu,et al.  Effects of task demands on the responses of color-selective neurons in the inferior temporal cortex , 2007, Nature Neuroscience.

[43]  D. Wilson,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006 .

[44]  D. Perrett,et al.  Visual neurones responsive to faces in the monkey temporal cortex , 2004, Experimental Brain Research.

[45]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[46]  David L. Sheinberg,et al.  Visual object recognition. , 1996, Annual review of neuroscience.

[47]  Y. Miyashita Inferior temporal cortex: where visual perception meets memory. , 1993, Annual review of neuroscience.