Chiral porous coordination networks: rational design and applications in enantioselective processes

[1]  Wenbin Lin,et al.  Chiral porous hybrid solids for practical heterogeneous asymmetric hydrogenation of aromatic ketones. , 2003, Journal of the American Chemical Society.

[2]  Wenbin Lin,et al.  Interlocked chiral nanotubes assembled from quintuple helices. , 2003, Journal of the American Chemical Society.

[3]  P. Cox,et al.  The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. , 2003, Chemical reviews.

[4]  H. Abruña,et al.  Photophysics and redox behavior of chiral transition metal polymers. , 2003, Inorganic chemistry.

[5]  Wenbin Lin,et al.  Hierarchical assembly of homochiral porous solids using coordination and hydrogen bonds. , 2003, Inorganic chemistry.

[6]  Wenbin Lin,et al.  Chiral crown ether pillared lamellar lanthanide phosphonates. , 2002, Journal of the American Chemical Society.

[7]  Wenbin Lin,et al.  Homochiral Metal−Organic Frameworks Based on Transition Metal Bisphosphonates , 2002 .

[8]  Wenbin Lin,et al.  Homochiral 3D lanthanide coordination networks with an unprecedented 4(9)6(6) topology. , 2002, Chemical communications.

[9]  Ryoji Noyori,et al.  Asymmetric catalysis: science and opportunities (Nobel lecture). , 2002, Angewandte Chemie.

[10]  Wenbin Lin,et al.  Rational design of homochiral solids based on two-dimensional metal carboxylates. , 2002, Angewandte Chemie.

[11]  Hans-Conrad zur Loye,et al.  Noninterpenetrating Square-Grid Coordination Polymers With Dimensions of 25×25 Å2 Prepared by UsingN,N′-Type Ligands: The First Chiral Square-Grid Coordination Polymer , 2002 .

[12]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[13]  Wenbin Lin,et al.  Chiral porous solids based on lamellar lanthanide phosphonates. , 2001, Journal of the American Chemical Society.

[14]  H. Abruña,et al.  Enantiomerically pure chiral coordination polymers: synthesis, spectroscopy, and electrochemistry in solution and on surfaces. , 2001, Journal of the American Chemical Society.

[15]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[16]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[17]  V. Pecoraro,et al.  Preparation of a chiral, 2-dimensional network containing metallacrown and copper benzoate building blocks. , 2000, Inorganic chemistry.

[18]  Andrea Prior,et al.  A Versatile Family of Interconvertible Microporous Chiral Molecular Frameworks: The First Example of Ligand Control of Network Chirality , 2000 .

[19]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[20]  Wu,et al.  Thermal Conversion of a Helical Coil into a Three-Dimensional Chiral Framework. , 1999, Angewandte Chemie.

[21]  J. Zubieta,et al.  Organic-Inorganic Hybrid Materials: From "Simple" Coordination Polymers to Organodiamine-Templated Molybdenum Oxides. , 1999, Angewandte Chemie.

[22]  Zhengtao Xu,et al.  Variable Pore Size, Variable Chemical Functionality, and an Example of Reactivity within Porous Phenylacetylene Silver Salts , 1999 .

[23]  Y. Aoyama,et al.  Helical Coordination Polymers from Achiral Components in Crystals. Homochiral Crystallization, Homochiral Helix Winding in the Solid State, and Chirality Control by Seeding , 1999 .

[24]  Y. Aoyama,et al.  Immobilization of Soluble Metal Complexes with a Hydrogen-Bonded Organic Network as a Supporter. A Simple Route to Microporous Solid Lewis Acid Catalysts , 1998 .

[25]  Stuart R Batten,et al.  Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.

[26]  J. Vittal,et al.  Topochemical Conversion of a Hydrogen-Bonded Three-Dimensional Network into a Covalently Bonded Framework. , 1998, Angewandte Chemie.

[27]  T. Kuroda–Sowa,et al.  Toward the Construction of Functional Solid-State Supramolecular Metal Complexes Containing Copper(I) And Silver(I) , 1998 .

[28]  Avelino Corma,et al.  From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. , 1997, Chemical reviews.

[29]  Katsuyuki Ogura,et al.  Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine , 1994 .

[30]  T. Ohsuna,et al.  Structure of the microporous titanosilicate ETS-10 , 1994, Nature.

[31]  R. Noyori,et al.  BINAP: an efficient chiral element for asymmetric catalysis , 1990 .

[32]  J. Newsam,et al.  Structural characterization of zeolite beta , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[33]  R. Noyori,et al.  Homogeneous asymmetric hydrogenation of functionalized ketones , 1988 .

[34]  Donald W. Breck,et al.  Zeolite Molecular Sieves: Structure, Chemistry, and Use , 1974 .