Defining and Detecting Emergence in Complex Networks

Emergence is seen as the most significant feature discriminating 'complex' from 'non complex' systems. Nevertheless, no standard definition of emergence is currently available in the literature. This lack of a shared view affects the development of tools to detect and model emergence for both scientific and engineering applications. Here we review some definitions of emergence with the aim to describe how they can be implemented in algorithms to detect and model emergence in sensor and communication networks.

[1]  H. Van Dyke Parunak,et al.  Entropy and self-organization in multi-agent systems , 2001, AGENTS '01.

[2]  Gianfranco Minati,et al.  Emergence and Ergodicity: A Line of Research , 2002 .

[3]  Phil Husbands,et al.  On Self-referential Shape Replication in Robust Aerospace Vehicles , 2004 .

[4]  Jan van Leeuwen,et al.  The emergent computational potential of evolving artificial living systems , 2002, AI Commun..

[5]  Australia,et al.  On Self-referential Shape Replication in Robust Aerospace Vehicles , 2004 .

[6]  P. Erd Os,et al.  On the strength of connectedness of random graphs , 1961 .

[7]  J. Crutchfield The calculi of emergence: computation, dynamics and induction , 1994 .

[8]  D. Hofstadter,et al.  Gödel, Escher, Bach: An Eternal Golden Braid@@@Godel, Escher, Bach: An Eternal Golden Braid , 1980 .

[9]  C. A. Hooker,et al.  Asymptotics, Reduction and Emergence , 2004, The British Journal for the Philosophy of Science.

[10]  C. Shalizi,et al.  Causal architecture, complexity and self-organization in time series and cellular automata , 2001 .

[11]  R. Solé,et al.  Information Theory of Complex Networks: On Evolution and Architectural Constraints , 2004 .

[12]  Ales Kubík,et al.  Toward a Formalization of Emergence , 2002, Artif. Life.

[13]  Christopher G. Langton,et al.  Life at the Edge of Chaos , 1992 .

[14]  R. Penrose,et al.  A theory of everything? , 2005, Nature.

[15]  Olof Görnerup,et al.  Objects that make objects: the population dynamics of structural complexity , 2004, Journal of The Royal Society Interface.

[16]  Chrystopher L. Nehaniv,et al.  Tracking Information Flow through the Environment: Simple Cases of Stigmerg , 2004 .

[17]  James P. Crutchfield,et al.  Evolving cellular automata to perform computations , 1997 .

[18]  Aude Billard,et al.  Evolvable Recovery Membranes in Self-monitoring Aerospace Vehicles , 2004 .

[19]  Mikhail Prokopenko,et al.  Evaluating Team Performance at the Edge of Chaos , 2003, RoboCup.

[20]  Andrew Wuensche,et al.  Classifying cellular automata automatically: Finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter , 1998, Complex..

[21]  James P. Crutchfield,et al.  An Algorithm for Pattern Discovery in Time Series , 2002, ArXiv.

[22]  Phil Husbands,et al.  Tracking Information Flow through the Environment: Simple Cases of Stigmergy , 2004 .

[23]  P. Erdos,et al.  On the strength of connectedness of a random graph , 1964 .

[24]  D. Hofstadter,et al.  Godel, Escher, Bach: An Eternal Golden Braid , 1979 .

[25]  G. Minati,et al.  Emergence in Complex, Cognitive, Social, and Biological Systems , 2002, Springer US.

[26]  J. Goldstein The Singular Nature of Emergent Levels: Suggestions for a Theory of Emergence , 2002 .

[27]  Mikhail Prokopenko,et al.  Complexity metrics for self-monitoring impact sensing networks , 2005, 2005 NASA/DoD Conference on Evolvable Hardware (EH'05).

[28]  Mikhail Prokopenko,et al.  Self-Organizing Hierarchies in Sensor and Communication Networks , 2005, Artificial Life.