Aggregation-Based Algebraic Multigrid for Convection-Diffusion Equations
暂无分享,去创建一个
[1] Thomas A. Manteuffel,et al. Algebraic Multigrid Based on Element Interpolation (AMGe) , 2000, SIAM J. Sci. Comput..
[2] S. Eisenstat,et al. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .
[3] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[4] Yvan Notay,et al. Algebraic analysis of two‐grid methods: The nonsymmetric case , 2010, Numer. Linear Algebra Appl..
[5] Cornelis W. Oosterlee,et al. An Evaluation of Parallel Multigrid as a Solver and a Preconditioner for Singularly Perturbed Problems , 1998, SIAM J. Sci. Comput..
[6] Maximilian Emans,et al. Performance of parallel AMG-preconditioners in CFD-codes for weakly compressible flows , 2010, Parallel Comput..
[7] Y. Notay,et al. A robust algebraic multilevel preconditioner for non symmetric M-matrices , 2000 .
[8] Jim E. Jones,et al. AMGE Based on Element Agglomeration , 2001, SIAM J. Sci. Comput..
[9] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[10] Maxim A. Olshanskii,et al. Convergence Analysis of a Multigrid Method for a Convection-Dominated Model Problem , 2004, SIAM J. Numer. Anal..
[11] V. Bulgakov. Multi-level iterative technique and aggregation concept with semi-analytical preconditioning for solving boundary-value problems , 1993 .
[12] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[13] Dietrich Braess. Towards algebraic multigrid for elliptic problems of second order , 2005, Computing.
[14] Cornelis W. Oosterlee,et al. Algebraic Multigrid Solvers for Complex-Valued Matrices , 2008, SIAM J. Sci. Comput..
[15] Cornelis W. Oosterlee,et al. Krylov Subspace Acceleration of Nonlinear Multigrid with Application to Recirculating Flows , 1999, SIAM J. Sci. Comput..
[16] Achi Brandt,et al. Fast Multigrid Solution of the Advection Problem with Closed Characteristics , 1998, SIAM J. Sci. Comput..
[17] Howard C. Elman,et al. Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .
[18] Yvan Notay,et al. Recursive Krylov‐based multigrid cycles , 2008, Numer. Linear Algebra Appl..
[19] Zdenek Strakos,et al. GMRES Convergence Analysis for a Convection-Diffusion Model Problem , 2005, SIAM J. Sci. Comput..
[20] Yvan Notay,et al. Analysis of Aggregation-Based Multigrid , 2008, SIAM J. Sci. Comput..
[21] J. E. Dendy. Black box multigrid for nonsymmetric problems , 1983 .
[22] Wolfgang Hackbusch,et al. Multi-grid methods and applications , 1985, Springer series in computational mathematics.
[23] R.D. Falgout,et al. An Introduction to Algebraic Multigrid Computing , 2006, Computing in Science & Engineering.
[24] NapovArtem,et al. An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012 .
[25] Ray S. Tuminaro,et al. A New Petrov--Galerkin Smoothed Aggregation Preconditioner for Nonsymmetric Linear Systems , 2008, SIAM J. Sci. Comput..
[26] L. Trefethen. Spectra and pseudospectra , 2005 .
[27] Artem Napov,et al. Algebraic analysis of aggregation‐based multigrid , 2011, Numer. Linear Algebra Appl..
[28] Ludmil T. Zikatanov,et al. A multigrid method based on graph matching for convection–diffusion equations , 2003, Numer. Linear Algebra Appl..
[29] E. Cuthill,et al. Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.
[30] Cornelis Vuik,et al. GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..
[31] Arnold Reusken,et al. A Multigrid Method Based on Incomplete Gaussian Elimination , 1996, Numer. Linear Algebra Appl..
[32] P. M. De Zeeuw,et al. Matrix-dependent prolongations and restrictions in a blackbox multigrid solver , 1990 .
[33] P. Vassilevski. Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .
[34] Arnold Reusken,et al. Convergence analysis of a multigrid method for convection–diffusion equations , 2002, Numerische Mathematik.
[35] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[36] Howard C. Elman,et al. Analysis and Comparison of Geometric and Algebraic Multigrid for Convection-Diffusion Equations , 2006, SIAM J. Sci. Comput..
[37] M. SIAMJ.,et al. RESIDUAL-MINIMIZING KRYLOV SUBSPACE METHODS FOR STABILIZED DISCRETIZATIONS OF CONVECTION-DIFFUSION EQUATIONS∗ , 1998 .
[38] Thomas A. Manteuffel,et al. Towards Adaptive Smoothed Aggregation (AlphaSA) for Nonsymmetric Problems , 2010, SIAM J. Sci. Comput..
[39] Thomas A. Manteuffel,et al. Adaptive Smoothed Aggregation (αSA) , 2004, SIAM J. Sci. Comput..
[40] D FalgoutRobert. An Introduction to Algebraic Multigrid , 2006 .
[41] Y. Notay. An aggregation-based algebraic multigrid method , 2010 .
[42] S. McCormick,et al. Towards Adaptive Smoothed Aggregation (αsa) for Nonsymmetric Problems * , 2022 .
[43] Thomas A. Manteuffel,et al. Adaptive Smoothed Aggregation (AlphaSA) Multigrid , 2005, SIAM Rev..
[44] Cornelis W. Oosterlee,et al. On Three-Grid Fourier Analysis for Multigrid , 2001, SIAM J. Sci. Comput..
[45] Irad Yavneh,et al. Coarse-Grid Correction for Nonelliptic and Singular Perturbation Problems , 1998, SIAM J. Sci. Comput..
[46] Artem Napov,et al. An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..