Aggregation-Based Algebraic Multigrid for Convection-Diffusion Equations

We consider the iterative solution of large sparse linear systems arising from the upwind finite difference discretization of convection-diffusion equations. The system matrix is then an M-matrix with nonnegative row sum, and, further, when the convective flow has zero divergence, the column sum is also nonnegative, possibly up to a small correction term. We investigate aggregation-based algebraic multigrid methods for this class of matrices. A theoretical analysis is developed for a simplified two-grid scheme with one damped Jacobi postsmoothing step. An uncommon feature of this analysis is that it applies directly to problems with variable coefficients; e.g., to problems with recirculating convective flow. On the basis of this theory, we develop an approach in which a guarantee is given on the convergence rate thanks to an aggregation algorithm that allows an explicit control of the location of the eigenvalues of the preconditioned matrix. Some issues that remain beyond the analysis are discussed in the...

[1]  Thomas A. Manteuffel,et al.  Algebraic Multigrid Based on Element Interpolation (AMGe) , 2000, SIAM J. Sci. Comput..

[2]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[3]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[4]  Yvan Notay,et al.  Algebraic analysis of two‐grid methods: The nonsymmetric case , 2010, Numer. Linear Algebra Appl..

[5]  Cornelis W. Oosterlee,et al.  An Evaluation of Parallel Multigrid as a Solver and a Preconditioner for Singularly Perturbed Problems , 1998, SIAM J. Sci. Comput..

[6]  Maximilian Emans,et al.  Performance of parallel AMG-preconditioners in CFD-codes for weakly compressible flows , 2010, Parallel Comput..

[7]  Y. Notay,et al.  A robust algebraic multilevel preconditioner for non symmetric M-matrices , 2000 .

[8]  Jim E. Jones,et al.  AMGE Based on Element Agglomeration , 2001, SIAM J. Sci. Comput..

[9]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[10]  Maxim A. Olshanskii,et al.  Convergence Analysis of a Multigrid Method for a Convection-Dominated Model Problem , 2004, SIAM J. Numer. Anal..

[11]  V. Bulgakov Multi-level iterative technique and aggregation concept with semi-analytical preconditioning for solving boundary-value problems , 1993 .

[12]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[13]  Dietrich Braess Towards algebraic multigrid for elliptic problems of second order , 2005, Computing.

[14]  Cornelis W. Oosterlee,et al.  Algebraic Multigrid Solvers for Complex-Valued Matrices , 2008, SIAM J. Sci. Comput..

[15]  Cornelis W. Oosterlee,et al.  Krylov Subspace Acceleration of Nonlinear Multigrid with Application to Recirculating Flows , 1999, SIAM J. Sci. Comput..

[16]  Achi Brandt,et al.  Fast Multigrid Solution of the Advection Problem with Closed Characteristics , 1998, SIAM J. Sci. Comput..

[17]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[18]  Yvan Notay,et al.  Recursive Krylov‐based multigrid cycles , 2008, Numer. Linear Algebra Appl..

[19]  Zdenek Strakos,et al.  GMRES Convergence Analysis for a Convection-Diffusion Model Problem , 2005, SIAM J. Sci. Comput..

[20]  Yvan Notay,et al.  Analysis of Aggregation-Based Multigrid , 2008, SIAM J. Sci. Comput..

[21]  J. E. Dendy Black box multigrid for nonsymmetric problems , 1983 .

[22]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[23]  R.D. Falgout,et al.  An Introduction to Algebraic Multigrid Computing , 2006, Computing in Science & Engineering.

[24]  NapovArtem,et al.  An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012 .

[25]  Ray S. Tuminaro,et al.  A New Petrov--Galerkin Smoothed Aggregation Preconditioner for Nonsymmetric Linear Systems , 2008, SIAM J. Sci. Comput..

[26]  L. Trefethen Spectra and pseudospectra , 2005 .

[27]  Artem Napov,et al.  Algebraic analysis of aggregation‐based multigrid , 2011, Numer. Linear Algebra Appl..

[28]  Ludmil T. Zikatanov,et al.  A multigrid method based on graph matching for convection–diffusion equations , 2003, Numer. Linear Algebra Appl..

[29]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[30]  Cornelis Vuik,et al.  GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..

[31]  Arnold Reusken,et al.  A Multigrid Method Based on Incomplete Gaussian Elimination , 1996, Numer. Linear Algebra Appl..

[32]  P. M. De Zeeuw,et al.  Matrix-dependent prolongations and restrictions in a blackbox multigrid solver , 1990 .

[33]  P. Vassilevski Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .

[34]  Arnold Reusken,et al.  Convergence analysis of a multigrid method for convection–diffusion equations , 2002, Numerische Mathematik.

[35]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[36]  Howard C. Elman,et al.  Analysis and Comparison of Geometric and Algebraic Multigrid for Convection-Diffusion Equations , 2006, SIAM J. Sci. Comput..

[37]  M. SIAMJ.,et al.  RESIDUAL-MINIMIZING KRYLOV SUBSPACE METHODS FOR STABILIZED DISCRETIZATIONS OF CONVECTION-DIFFUSION EQUATIONS∗ , 1998 .

[38]  Thomas A. Manteuffel,et al.  Towards Adaptive Smoothed Aggregation (AlphaSA) for Nonsymmetric Problems , 2010, SIAM J. Sci. Comput..

[39]  Thomas A. Manteuffel,et al.  Adaptive Smoothed Aggregation (αSA) , 2004, SIAM J. Sci. Comput..

[40]  D FalgoutRobert An Introduction to Algebraic Multigrid , 2006 .

[41]  Y. Notay An aggregation-based algebraic multigrid method , 2010 .

[42]  S. McCormick,et al.  Towards Adaptive Smoothed Aggregation (αsa) for Nonsymmetric Problems * , 2022 .

[43]  Thomas A. Manteuffel,et al.  Adaptive Smoothed Aggregation (AlphaSA) Multigrid , 2005, SIAM Rev..

[44]  Cornelis W. Oosterlee,et al.  On Three-Grid Fourier Analysis for Multigrid , 2001, SIAM J. Sci. Comput..

[45]  Irad Yavneh,et al.  Coarse-Grid Correction for Nonelliptic and Singular Perturbation Problems , 1998, SIAM J. Sci. Comput..

[46]  Artem Napov,et al.  An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..