A Review and Taxonomy of Interactive Optimization Methods in Operations Research

This article presents a review and a classification of interactive optimization methods. These interactive methods are used for solving optimization problems. The interaction with an end user or decision maker aims at improving the efficiency of the optimization procedure, enriching the optimization model, or informing the user regarding the solutions proposed by the optimization system. First, we present the challenges of using optimization methods as a tool for supporting decision making, and we justify the integration of the user in the optimization process. This integration is generally achieved via a dynamic interaction between the user and the system. Next, the different classes of interactive optimization approaches are presented. This detailed review includes trial and error, interactive reoptimization, interactive multiobjective optimization, interactive evolutionary algorithms, human-guided search, and other approaches that are less well covered in the research literature. On the basis of this review, we propose a classification that aims to better describe and compare interaction mechanisms. This classification offers two complementary views on interactive optimization methods. The first perspective focuses on the user’s contribution to the optimization process, and the second concerns the components of interactive optimization systems. Finally, on the basis of this review and classification, we identify some open issues and potential perspectives for interactive optimization methods.

[1]  John Rachlin,et al.  A-Teams: An Agent Architecture for Optimization and Decision Support , 1998, ATAL.

[2]  Patrick D. Krolak,et al.  A man-machine approach toward solving the traveling salesman problem , 1970, DAC '70.

[3]  David Meignan,et al.  An interactive heuristic approach for the P-forest problem , 2011, 2011 IEEE International Conference on Systems, Man, and Cybernetics.

[4]  Shengxiang Yang,et al.  Evolutionary dynamic optimization: A survey of the state of the art , 2012, Swarm Evol. Comput..

[5]  Richard P. Bagozzi,et al.  The Legacy of the Technology Acceptance Model and a Proposal for a Paradigm Shift , 2007, J. Assoc. Inf. Syst..

[6]  Z. Popovic,et al.  Increased Diels-Alderase activity through backbone remodeling guided by Foldit players , 2012, Nature Biotechnology.

[7]  David Meignan,et al.  Interactive Optimization with Long-Term Preferences Inference on a Shift Scheduling Problem , 2013 .

[8]  Vesa Ojalehto,et al.  Bilevel heat exchanger network synthesis with an interactive multi-objective optimization method , 2012 .

[9]  Andrzej P. Wierzbicki,et al.  Model-based decision support , 2000 .

[10]  PesantGilles,et al.  A heuristic approach to automated forest road location , 2012 .

[11]  W. Banzhaf C2.10 Interactive Evolution , 1997 .

[12]  Jean-Yves Audibert Optimization for Machine Learning , 1995 .

[13]  David Meignan,et al.  A heuristic approach to schedule reoptimization in the context of interactive optimization , 2014, GECCO.

[14]  Thomas Bartz-Beielstein,et al.  Sequential Model-Based Parameter Optimization: an Experimental Investigation of Automated and Interactive Approaches , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[15]  David Arnott,et al.  Cognitive biases and decision support systems development: a design science approach , 2006, Inf. Syst. J..

[16]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[17]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[18]  Steven Walczak,et al.  Nurse Scheduling: From Academia to Implementation or Not? , 2007, Interfaces.

[19]  Hoong Chuin Lau,et al.  Tuning Tabu Search Strategies Via Visual Diagnosis , 2007, Metaheuristics.

[20]  Michael C. Fu,et al.  Feature Article: Optimization for simulation: Theory vs. Practice , 2002, INFORMS J. Comput..

[21]  Jiyin Liu,et al.  Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling , 1993 .

[22]  Jürgen Branke,et al.  Consideration of Partial User Preferences in Evolutionary Multiobjective Optimization , 2008, Multiobjective Optimization.

[23]  Michel Gendreau,et al.  Hyper-heuristics: a survey of the state of the art , 2013, J. Oper. Res. Soc..

[24]  Rolf H. Möhring,et al.  The Concept of Recoverable Robustness, Linear Programming Recovery, and Railway Applications , 2009, Robust and Online Large-Scale Optimization.

[25]  A. Shapiro,et al.  CHAPTER 101 Stochastic Optimization , 2000 .

[26]  Gilbert Laporte,et al.  Fifty Years of Vehicle Routing , 2009, Transp. Sci..

[27]  Kaisa Miettinen,et al.  Using Interactive Multiobjective Optimization in Continuous Casting of Steel , 2007 .

[28]  Andrzej Jaszkiewicz,et al.  The 'Light Beam Search' approach - an overview of methodology and applications , 1999, Eur. J. Oper. Res..

[29]  Bernard Roy,et al.  Main sources of inaccurate determination, uncertainty and imprecision in decision models , 1989 .

[30]  Stephen J. Wright,et al.  Introduction: Optimization and Machine Learning , 2011 .

[31]  Hidetoshi Tanaka,et al.  A Case Study in Large-Scale Interactive Optimization , 2005, Artificial Intelligence and Applications.

[32]  Barry McCollum,et al.  A Perspective on Bridging the Gap Between Theory and Practice in University Timetabling , 2006, PATAT.

[33]  Claude-Guy Quimper,et al.  A MIXED-INITIATIVE SYSTEM FOR INTERACTIVE TACTICAL SUPPLY CHAIN OPTIMIZATION , 2014 .

[34]  Tor-Martin Tveit,et al.  Interactive Multi-objective Optimisation of Configurations for an Oxyfuel Power Plant Process for CO2 Capture , 2012 .

[35]  Sung-Bae Cho,et al.  Application of interactive genetic algorithm to fashion design , 2000 .

[36]  Joe Marks,et al.  Human-guided tabu search , 2002, AAAI/IAAI.

[37]  P. Eskelinen Objective trade-off rate information in interactive multiobjective optimization methods: a survey of theory and applications , 2008 .

[38]  David Baker,et al.  Algorithm discovery by protein folding game players , 2011, Proceedings of the National Academy of Sciences.

[39]  Gloria E. Phillips-Wren,et al.  Assisting Human Decision Making with Intelligent Technologies , 2008, KES.

[40]  Xavier Llorà,et al.  Combating user fatigue in iGAs: partial ordering, support vector machines, and synthetic fitness , 2005, GECCO '05.

[41]  Amedeo Cesta,et al.  A CSP-Based Interactive Decision Aid for Space Mission Planning , 2003, AI*IA.

[42]  Kaisa Miettinen,et al.  Interactive Multiobjective Optimization for 3D HDR Brachytherapy Applying IND-NIMBUS , 2010 .

[43]  Michael Pinedo Design and Implementation of Scheduling Systems: Basic Concepts , 2012 .

[44]  Mauro Birattari The Problem of Tuning Metaheuristics , 2005 .

[45]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[46]  Kaisa Miettinen,et al.  Introduction to Multiobjective Optimization: Interactive Approaches , 2008, Multiobjective Optimization.

[47]  Kevin Leyton-Brown,et al.  Automated Configuration of Mixed Integer Programming Solvers , 2010, CPAIOR.

[48]  LegrisPaul,et al.  Why do people use information technology , 2003 .

[49]  Hiroki Sayama,et al.  Hyperinteractive Evolutionary Computation , 2011, IEEE Transactions on Evolutionary Computation.

[50]  Amedeo Cesta,et al.  Mexar2: AI Solves Mission Planner Problems , 2007, IEEE Intelligent Systems.

[51]  Christos D. Tarantilis,et al.  Solving Large-Scale Vehicle Routing Problems with Time Windows: The State-of-the-Art , 2010 .

[52]  Jerry Alan Fails,et al.  Interactive machine learning , 2003, IUI '03.

[53]  Pedro S. de Souza,et al.  Asynchronous Teams: Cooperation Schemes for Autonomous Agents , 1998, J. Heuristics.

[54]  Kalyanmoy Deb,et al.  Multiobjective optimization , 1997 .

[55]  G. Ausiello,et al.  Chapter 4 Complexity and Approximation in Reoptimization , 2014 .

[56]  Peter G. Anderson,et al.  Neural network fitness functions for a musical IGA , 1996 .

[57]  Kaisa Miettinen,et al.  Survey of methods to visualize alternatives in multiple criteria decision making problems , 2012, OR Spectrum.

[58]  Christopher V. Jones Feature Article - Visualization and Optimization , 1994, INFORMS J. Comput..

[59]  Tianjiao Wu,et al.  Optimization Problems , 2019, Active Balancing of Bike Sharing Systems.

[60]  Tamar Kugler Decision modeling and behavior in complex and uncertain environments , 2008 .

[61]  Kaisa Miettinen,et al.  Interactive multiobjective optimization system WWW-NIMBUS on the Internet , 2000, Comput. Oper. Res..

[63]  Anna Zych,et al.  Reoptimization of NP-hard Problems , 2012 .

[64]  R. Benayoun,et al.  Linear programming with multiple objective functions: Step method (stem) , 1971, Math. Program..

[65]  Denis Bouyssou,et al.  Building Criteria: A Prerequisite for MCDA , 1990 .

[66]  KnustSigrid,et al.  A Review and Taxonomy of Interactive Optimization Methods in Operations Research , 2015 .

[67]  Xavier Gandibleux,et al.  A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..

[68]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[69]  Manuel Laguna,et al.  Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..

[70]  Joe Marks,et al.  Human-guided search , 2010, J. Heuristics.

[71]  Kaisa Miettinen,et al.  Introduction to Multiobjective Optimization: Noninteractive Approaches , 2008, Multiobjective Optimization.

[72]  Wan Seon Shin,et al.  Interactive multiple objective optimization: Survey I - continuous case , 1991, Comput. Oper. Res..

[73]  Hideyuki Takagi,et al.  Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation , 2001, Proc. IEEE.

[74]  Kaisa Miettinen,et al.  Wastewater treatment: New insight provided by interactive multiobjective optimization , 2011, Decis. Support Syst..

[75]  JOHANNES FÜRNKRANZ,et al.  Separate-and-Conquer Rule Learning , 1999, Artificial Intelligence Review.

[76]  Joe Marks,et al.  Human-Guided Simple Search , 2000, AAAI/IAAI.

[77]  Claude-Guy Quimper,et al.  Human-machine interaction for real-time linear optimization , 2012, 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[78]  Christopher Vyn Jones,et al.  Visualization and Optimization , 1997 .

[79]  Sung-Bae Cho,et al.  Sparse fitness evaluation for reducing user burden in interactive genetic algorithm , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[80]  E. Tsang,et al.  Guided Local Search , 2010 .

[81]  Laurent El Ghaoui,et al.  Chapter Fourteen. Robust Adjustable Multistage Optimization , 2009 .

[82]  Jürgen Branke,et al.  Interactive Multiobjective Optimization from a Learning Perspective , 2008, Multiobjective Optimization.

[83]  Maya Cakmak,et al.  Power to the People: The Role of Humans in Interactive Machine Learning , 2014, AI Mag..

[84]  Frederick S. Hillier,et al.  Introduction of Operations Research , 1967 .

[85]  Christer Carlsson,et al.  Past, present, and future of decision support technology , 2002, Decis. Support Syst..

[86]  Eric D. Smith,et al.  Cognitive Biases Affect the Acceptance of Tradeoff Studies , 2008 .

[87]  Salvatore Greco,et al.  Dominance-Based Rough Set Approach to Interactive Multiobjective Optimization , 2008, Multiobjective Optimization.

[88]  M. L. Fisher Interactive optimization , 1986 .

[89]  R. Faure,et al.  Introduction to operations research , 1968 .

[90]  Fred D. Davis,et al.  User Acceptance of Computer Technology: A Comparison of Two Theoretical Models , 1989 .

[91]  Hendrik Van Landeghem,et al.  The State of the Art of Nurse Rostering , 2004, J. Sched..

[92]  Carlo Vercellis,et al.  Business Intelligence: Data Mining and Optimization for Decision Making , 2009 .

[93]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[94]  Warren B. Powell,et al.  Interactive Optimization Improves Service and Performance for Yellow Freight System , 1992 .

[95]  Carlos A. Bana e Costa,et al.  Readings in Multiple Criteria Decision Aid , 2011 .

[96]  M. Blanchette,et al.  Open-Phylo: a customizable crowd-computing platform for multiple sequence alignment , 2013, Genome Biology.

[97]  Curry Guinn,et al.  Mixed-initiative interaction , 1999 .

[98]  Kaisa Miettinen,et al.  NAUTILUS method: An interactive technique in multiobjective optimization based on the nadir point , 2010, Eur. J. Oper. Res..

[99]  Jyrki Wallenius,et al.  Comparative Evaluation of Some Interactive Approaches to Multicriterion Optimization , 1975 .

[100]  B. Roy Paradigms and Challenges , 2005 .

[101]  Michael C. Fu,et al.  Optimization for Simulation: Theory vs. Practice , 2002 .

[102]  Meghna Babbar-Sebens,et al.  A Case-Based Micro Interactive Genetic Algorithm (CBMIGA) for interactive learning and search: Methodology and application to groundwater monitoring design , 2010, Environ. Model. Softw..

[103]  Mark Schrope Solving tough problems with games , 2013, Proceedings of the National Academy of Sciences.

[104]  Guisseppi A. Forgionne An architecture for the integration of decision making support functionalities , 2002 .

[105]  Meghna Babbar-Sebens,et al.  Interactive Genetic Algorithm with Mixed Initiative Interaction for multi-criteria ground water monitoring design , 2012, Appl. Soft Comput..

[106]  Stacey D. Scott,et al.  Investigating human-computer optimization , 2002, CHI.

[107]  Alexander H. G. Rinnooy Kan,et al.  Interactive Optimization of Bulk Sugar Deliveries , 1992 .

[108]  John Ingham,et al.  Why do people use information technology? A critical review of the technology acceptance model , 2003, Inf. Manag..

[109]  Rolf H. Möhring,et al.  Robust and Online Large-Scale Optimization: Models and Techniques for Transportation Systems , 2009, Robust and Online Large-Scale Optimization.

[110]  Bonnie M. Muir,et al.  Trust Between Humans and Machines, and the Design of Decision Aids , 1987, Int. J. Man Mach. Stud..

[111]  S. Barry Cooper,et al.  Computability In Context: Computation and Logic in the Real World , 2009 .

[112]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[113]  Kristin P. Bennett,et al.  The Interplay of Optimization and Machine Learning Research , 2006, J. Mach. Learn. Res..

[114]  D. DavisFred,et al.  User Acceptance of Computer Technology , 1989 .

[115]  Fred D. Davis,et al.  User Perceptions of Decision Support Effectiveness: Two Production Planning Experiments * , 1994 .

[116]  Weng-Keen Wong,et al.  Fixing the program my computer learned: barriers for end users, challenges for the machine , 2009, IUI.

[117]  Jürgen Branke,et al.  Interactive Multiobjective Evolutionary Algorithms , 2008, Multiobjective Optimization.

[118]  Jennifer Werfel,et al.  Model Based Decision Support Methodology With Environmental Applications , 2016 .

[119]  John D. Lee,et al.  Trust in Automation: Designing for Appropriate Reliance , 2004 .

[120]  Martin W. P. Savelsbergh,et al.  The General Pickup and Delivery Problem , 1995, Transp. Sci..

[121]  Raymond Bisdorff,et al.  Human centered processes and decision support systems , 2002, Eur. J. Oper. Res..