A new class of symmetric (v, k, λ)-designs

AbstractWe construct new families of symmetric (v, k, λ)-designs with parameters $$\begin{gathered} v = p^s \cdot (q^{2m} - 1)/(q - 1). \hfill \\ k = q^{2m - 1} \cdot p^{s - 1} , \hfill \\ \lambda = p^{s - 1} \cdot q^{2m - 2} \cdot (p^{s - 1} - 1)(p - 1) \hfill \\ \end{gathered} $$ wherep is a prime andq is a prime power with $$q = (p^{s - 1} - 1)/(p - 1).$$ The orders of our designs aren=p2s−2·q2m−2.

[1]  Gerald Berman Families of generalized weighing matrices , 1978 .

[2]  Vladimir D. Tonchev,et al.  A symmetric 2-(160, 54, 18) design , 1993 .

[3]  Hanfried Lenz,et al.  Design theory , 1985 .

[4]  J. J. Seidel,et al.  Orthogonal Matrices with Zero Diagonal , 1967, Canadian Journal of Mathematics.

[5]  Edward Spence A New Family of Symmetric 2-(v, k, lambda) Block Designs , 1993, Eur. J. Comb..

[6]  D. Jungnickel On Automorphism Groups of Divisible Designs , 1982, Canadian Journal of Mathematics.

[7]  B. Gordon,et al.  Some New Difference Sets , 1962, Canadian Journal of Mathematics.

[8]  E. Lander Symmetric Designs: An Algebraic Approach , 1983 .