Implicit dynamic analysis using an isogeometric Reissner–Mindlin shell formulation

Summary In isogeometric analysis, identical basis functions are used for geometrical representation and analysis. In this work, non-uniform rational basis splines basis functions are applied in an isoparametric approach. An isogeometric Reissner–Mindlin shell formulation for implicit dynamic calculations using the Galerkin method is presented. A consistent as well as a lumped matrix formulation is implemented. The suitability of the developed shell formulation for natural frequency analysis is demonstrated by a numerical example. In a second set of examples, transient problems of plane and curved geometries undergoing large deformations in combination with nonlinear material behavior are investigated. Via a zero-thickness stress algorithm for arbitrary material models, a J2-plasticity constitutive law is implemented. In the numerical examples, the effectiveness, robustness, and superior accuracy of a continuous interpolation method of the shell director vector is compared with experimental results and alternative numerical approaches. Copyright © 2016 John Wiley & Sons, Ltd.

[1]  Ernst Rank,et al.  Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries , 2014 .

[2]  Sven Klinkel,et al.  The weak substitution method – an application of the mortar method for patch coupling in NURBS‐based isogeometric analysis , 2015 .

[3]  Tinh Quoc Bui,et al.  A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates , 2011 .

[4]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[5]  Peter Betsch,et al.  Isogeometric analysis and domain decomposition methods , 2012 .

[6]  Barbara Wohlmuth,et al.  Isogeometric mortar methods , 2014, 1407.8313.

[7]  Hung Nguyen-Xuan,et al.  Static, free vibration, and buckling analysis of laminated composite Reissner–Mindlin plates using NURBS‐based isogeometric approach , 2012 .

[8]  Alessandro Reali,et al.  Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations , 2013 .

[9]  Emmett A. Witmer,et al.  THEORETICAL-EXPERIMENTAL CORRELATION OF LARGE DYNAMIC AND PERMANENT DEFORMATIOONS OF IMPULSIVELY-LOADED SIMPLE STRUCTURES , 1964 .

[10]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[11]  E. A. Witmer,et al.  Experimental and theoretical studies of explosive-induced large dynamic and permanent deformations of simple structures , 1967 .

[12]  Ralf Müller,et al.  Dual and approximate dual basis functions for B-splines and NURBS – Comparison and application for an efficient coupling of patches with the isogeometric mortar method , 2017 .

[13]  Wei Liu,et al.  Novel higher order mass matrices for isogeometric structural vibration analysis , 2013 .

[14]  Thomas J. R. Hughes,et al.  Blended isogeometric shells , 2013 .

[15]  Werner Wagner,et al.  A robust non‐linear mixed hybrid quadrilateral shell element , 2005 .

[16]  Werner Wagner,et al.  THEORY AND NUMERICS OF THREE-DIMENSIONAL BEAMS WITH ELASTOPLASTIC MATERIAL BEHAVIOUR ∗ , 2000 .

[17]  A. Combescure,et al.  Efficient isogeometric NURBS-based solid-shell elements: Mixed formulation and B-method , 2013 .

[18]  Alain Combescure,et al.  An isogeometric locking‐free NURBS‐based solid‐shell element for geometrically nonlinear analysis , 2015 .

[19]  Pilseong Kang,et al.  Isogeometric analysis of topologically complex shell structures , 2015 .

[20]  Saeed Shojaee,et al.  Free vibration analysis of thin plates by using a NURBS-based isogeometric approach , 2012 .

[21]  Habibou Maitournam,et al.  Improved numerical integration for locking treatment in isogeometric structural elements. Part II: Plates and shells , 2015 .

[22]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[23]  W. Dornisch,et al.  ON THE CHOICE OF THE DIRECTOR FOR ISOGEOMETRIC REISSNER-MINDLIN SHELL ANALYSIS , 2014 .

[24]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[25]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part VII: Shell intersections with -DOF finite element formulations , 1993 .

[26]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[27]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[28]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[29]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[30]  Sven Klinkel,et al.  Using finite strain 3D‐material models in beam and shell elements , 2002 .

[31]  W. Dornisch,et al.  An efficient and robust rotational formulation for isogeometric Reissner–Mindlin shell elements , 2016 .

[32]  Sven Klinkel,et al.  Treatment of Reissner–Mindlin shells with kinks without the need for drilling rotation stabilization in an isogeometric framework , 2014 .

[33]  B. Zastrau,et al.  On an analogy between the deformation gradient and a generalized shell shifter tensor , 2005 .

[34]  J. F. Caseiro,et al.  On the Assumed Natural Strain method to alleviate locking in solid-shell NURBS-based finite elements , 2014 .

[35]  Cv Clemens Verhoosel,et al.  An isogeometric continuum shell element for non-linear analysis , 2014 .

[36]  Roland Wüchner,et al.  Analysis in computer aided design: Nonlinear isogeometric B-Rep analysis of shell structures , 2015 .

[37]  L. Morino,et al.  An Improved Numerical Calculation Technique for Large Elastic-Plastic Transient Deformations of Thin Shells: Part 2—Evaluation and Applications , 1971 .

[38]  Sven Klinkel,et al.  Boundary Conditions and Multi‐Patch Connections in Isogeometric Analysis , 2011 .

[39]  Yuri Bazilevs,et al.  Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .

[40]  B. Simeon,et al.  Isogeometric Reissner–Mindlin shell analysis with exactly calculated director vectors , 2013 .

[41]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[42]  Cv Clemens Verhoosel,et al.  An isogeometric solid‐like shell element for nonlinear analysis , 2013 .

[43]  Wim Desmet,et al.  Dynamic analysis of shell structures containing kinks using an isogeometric Kirchhoff-Love formulation , 2015 .

[44]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[45]  R. Echter,et al.  A hierarchic family of isogeometric shell finite elements , 2013 .

[46]  Roland Wüchner,et al.  A Nitsche‐type formulation and comparison of the most common domain decomposition methods in isogeometric analysis , 2014 .

[47]  Vinh Phu Nguyen,et al.  Nitsche’s method for two and three dimensional NURBS patch coupling , 2013, 1308.0802.

[48]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[49]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[50]  Guirong Liu,et al.  An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape , 2003 .

[51]  Sven Klinkel,et al.  Interpolation of Rotations and Coupling of Patches in Isogeometric Reissner-Mindlin Shell Analysis , 2015 .

[52]  Jerry I. Lin,et al.  Explicit algorithms for the nonlinear dynamics of shells , 1984 .