Hydrothermal plume dynamics on Europa: Implications for chaos formation

[1] Hydrothermal plumes may be responsible for transmitting radiogenic or tidally generated heat from Europa’s rocky interior through a liquid ocean to the base of its ice shell. This process has been implicated in the formation of chaos regions and lenticulae by melting or exciting convection in the ice layer. In contrast to earlier work, we argue that Europa’s ocean should be treated as an unstratified fluid. We have adapted and expanded upon existing work describing buoyant plumes in a rotating, unstratified environment. We discuss the scaling laws governing the flow and geometry of plumes on Europa and perform a laboratory experiment to obtain scaling constants and to visualize plume behavior in a Europa-like parameter regime. We predict that hydrothermal plumes on Europa are of a lateral scale (at least 25–50 km) comparable to large chaos regions; they are too broad to be responsible for the formation of individual lenticulae. Plume heat fluxes (0.1–10 W/m 2 ) are too weak to allow complete melt-through of the ice layer. Current speeds in the plume (3–8 mm/s) are much slower than indicated by previous studies. The observed movement of ice blocks in the Conamara Chaos region is unlikely to be driven by such weak flow. INDEX TERMS: 6218 Planetology: Solar System Objects: Jovian satellites; 5418 Planetology: Solid Surface Planets: Heat flow; 5430 Planetology: Solid Surface Planets: Interiors (8147); 4540 Oceanography: Physical: Ice mechanics and air/sea/ice exchange processes; 4568 Oceanography: Physical: Turbulence, diffusion, and mixing processes; KEYWORDS: chaos, Europa, hydrothermal plumes

[1]  R. Beebe Jupiter: The Planet, Satellites and Magnetosphere , 2005 .

[2]  J. Holton An introduction to dynamic meteorology , 2004 .

[3]  D. Hebert,et al.  Differential mixing by breaking internal waves , 2003 .

[4]  M. Manga,et al.  Causes, characteristics and consequences of convective diapirism on Europa , 2002 .

[5]  Tilman Spohn,et al.  Oceans in the icy Galilean satellites of Jupiter , 2002 .

[6]  P. Schenk Thickness consb ints on the icy shells of the galilean satellites from a comparison of crater shapes , 2022 .

[7]  R. Kirk,et al.  Geology and origin of Europa's “Mitten” feature (Murias Chaos) , 2002 .

[8]  B. R. Tufts,et al.  TIDAL‐TECTONIC PROCESSES AND THEIR IMPLICATIONS FOR THE CHARACTER OF EUROPA'S ICY CRUST , 2002 .

[9]  H. Melosh,et al.  Is Europa's Subsurface Water Ocean Warm? , 2002 .

[10]  David P. O'Brien,et al.  A melt-through model for chaos formation on Europa , 2002 .

[11]  F. Fanale,et al.  An experimental estimate of Europa's “ocean” composition independent of Galileo orbital remote sensing , 2001 .

[12]  J. Delaney,et al.  Evidence for a weakly stratified Europan ocean sustained by seafloor heat flux , 2001 .

[13]  Jeffrey S. Kargel,et al.  Europa's Crust and Ocean: Origin, Composition, and the Prospects for Life , 2000 .

[14]  M. Kivelson,et al.  Subsurface Oceans on Europa and Callisto: Constraints from Galileo Magnetometer Observations , 2000 .

[15]  B. R. Tufts,et al.  Distribution of chaotic terrain on Europa , 2000 .

[16]  G. Schubert,et al.  The Tidal Response of Europa , 2000 .

[17]  C. Russell,et al.  Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. , 2000, Science.

[18]  J. Head,et al.  Evaluation of models for the formation of chaotic terrain on Europa , 2000 .

[19]  Clark R. Chapman,et al.  Does Europa have a subsurface ocean? Evaluation of the geological evidence , 1999 .

[20]  S. D. Kadel,et al.  Chaos on Europa , 1999 .

[21]  A. Showman,et al.  The Galilean satellites. , 1999, Science.

[22]  S. Peale Origin and evolution of the natural satellites , 1999 .

[23]  J. Kirschvink,et al.  Life in Ice-Covered Oceans , 1999, Science.

[24]  J. Head,et al.  Brine mobilization during lithospheric heating on Europa: Implications for formation of chaos terrain, lenticula texture, and color variations , 1999 .

[25]  R. Greeley,et al.  Spatial Distribution of Lenticulae and Chaos on Europa , 1999 .

[26]  John Marshall,et al.  Open‐ocean convection: Observations, theory, and models , 1999 .

[27]  R. Greeley,et al.  Estimates of ice thickness in the Conamara Chaos Region of Europa , 1998 .

[28]  R. Pappalardo,et al.  Conamara Chaos Region, Europa: Reconstruction of mobile polygonal ice blocks , 1998 .

[29]  K. Zahnle,et al.  Cratering rates on the Galilean satellites. , 1998, Icarus.

[30]  R.R. Chen,et al.  Development of a point plume in the presence of background rotation , 1998 .

[31]  J. Overland,et al.  Arctic sea ice as a granular plastic , 1998 .

[32]  J. K. Crowley,et al.  Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer. The NIMS Team. , 1998, Science.

[33]  R. Greeley,et al.  Geological evidence for solid-state convection in Europa's ice shell , 1998, Nature.

[34]  B. R. Tufts,et al.  Evidence for a subsurface ocean on Europa , 1998, Nature.

[35]  J. Burns,et al.  Evidence for non-synchronous rotation of Europa , 1998, Nature.

[36]  John Marshall,et al.  Restratification after Deep Convection , 1997 .

[37]  G. Schubert,et al.  Europa's differentiated internal structure: inferences from two Galileo encounters. , 1997, Science.

[38]  J. W. Lavelle,et al.  Buoyancy-driven plumes in rotating, stratified cross flows: Plume dependence on rotation, turbulent mixing, and cross-flow strength , 1997 .

[39]  John Whitehead,et al.  Localized convection in rotating stratified fluid , 1996 .

[40]  J. McWilliams,et al.  Rapidly rotating turbulent Rayleigh-Bénard convection , 1996, Journal of Fluid Mechanics.

[41]  John Marshall,et al.  Dynamics of isolated convective regions in the ocean , 1996 .

[42]  W. McKinnon,et al.  Is There Evidence for Polar Wander on Europa , 1996 .

[43]  K. Speer,et al.  The growth of convective plumes at seafloor hot springs , 1995 .

[44]  Alasdair G M Nairn Global changes in the perspectives of the past: Dahlem Workshops reports ES. 12, Wiley, Chichester, UK, 1993, hardcover, XV + 383 pp., price £80.00, ISBN 0-471-93603-0 , 1994 .

[45]  T. Maxworthy,et al.  Unsteady, Turbulent Convection into a Homogeneous, Rotating Fluid,with Oceanographic Applications , 1994 .

[46]  John Marshall,et al.  Convection with Rotation in a Neutral Ocean: A Study of Open-Ocean Deep Convection , 1993 .

[47]  J. Delaney,et al.  Physical characteristics of the Endeavour Ridge hydrothermal plume during July 1988 , 1992 .

[48]  K. Helfrich,et al.  Experiments on baroclinic vortex shedding from hydrothermal plumes , 1991 .

[49]  E. Baker,et al.  Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean , 1987 .

[50]  D. Stevenson,et al.  Polar wander of an ice shell on Europa , 1987 .

[51]  J. Turner,et al.  Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows , 1986, Journal of Fluid Mechanics.

[52]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[53]  W. Hibler A Dynamic Thermodynamic Sea Ice Model , 1979 .

[54]  J. Turner,et al.  Buoyancy Effects in Fluids , 1973 .

[55]  Cynthia B. Phillips,et al.  Europa as an Abode of Life , 2004, Origins of life and evolution of the biosphere.

[56]  Robert T. Pappalardo,et al.  Geology of Europa , 2004 .

[57]  B. R. Tufts,et al.  Pits and uplifts on Europa , 2003 .

[58]  L. Irwin,et al.  Energy cycling and hypothetical organisms in Europa's ocean. , 2002, Astrobiology.

[59]  H. Hellmer,et al.  Modeling giant-iceberg drift under the influence of sea ice in the Weddell Sea, Antarctica , 2001 .

[60]  J. Head,et al.  THE SPACING DISTANCES OF CHAOS AND LENTICULAE ON EUROPA , 2001 .

[61]  John Marshall,et al.  Regimes and scaling laws for rotating deep convection in the ocean , 1995 .

[62]  Raymond W. Schmitt,et al.  DOUBLE DIFFUSION IN OCEANOGRAPHY , 1994 .

[63]  E. J. List Turbulent Jets and Plumes , 1982 .

[64]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .