Bacteria-mediated modification of insecticide toxicity in the yellow fever mosquito, Aedes aegypti.

[1]  L. Vasseur,et al.  Gut Microbiota Mediate Insecticide Resistance in the Diamondback Moth, Plutella xylostella (L.) , 2018, Front. Microbiol..

[2]  A. Enayati,et al.  The role of midgut symbiotic bacteria in resistance of Anopheles stephensi (Diptera: Culicidae) to organophosphate insecticides , 2017, Pathogens and global health.

[3]  Z. Xi,et al.  Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel) , 2017, Microbiome.

[4]  I. Eleftherianos,et al.  Endosymbiotic bacteria in insects: guardians of the immune system? , 2013, Front. Physiol..

[5]  J. Werren Symbionts provide pesticide detoxification , 2012, Proceedings of the National Academy of Sciences.

[6]  T. Fukatsu,et al.  Symbiont-mediated insecticide resistance , 2012, Proceedings of the National Academy of Sciences.

[7]  S. Ritchie,et al.  Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission , 2011, Nature.

[8]  J. Oakeshott,et al.  The evolution of new enzyme function: lessons from xenobiotic metabolizing bacteria versus insecticide-resistant insects , 2011, Evolutionary applications.

[9]  U. Bernier,et al.  Toxicity Comparison of Eight Repellents Against Four Species of Female Mosquitoes , 2009, Journal of the American Mosquito Control Association.

[10]  G. Dimopoulos,et al.  Implication of the Mosquito Midgut Microbiota in the Defense against Malaria Parasites , 2009, PLoS pathogens.

[11]  J. Bloomquist,et al.  Pharmacological Mapping of the Acetylcholinesterase Catalytic Gorge in Mosquitoes with Bis(n)-Tacrines , 2009 .

[12]  L. Field,et al.  A novel assay reveals the blockade of esterases by piperonyl butoxide. , 2008, Pest management science.

[13]  Karyn N. Johnson,et al.  Wolbachia and Virus Protection in Insects , 2008, Science.

[14]  J. Werren,et al.  Wolbachia: master manipulators of invertebrate biology , 2008, Nature Reviews Microbiology.

[15]  T. Scott,et al.  Defining Challenges and Proposing Solutions for Control of the Virus Vector Aedes aegypti , 2008, PLoS medicine.

[16]  Eleanor R Haine,et al.  Symbiont-mediated protection , 2008, Proceedings of the Royal Society B: Biological Sciences.

[17]  N. Moran,et al.  Colloquium Papers: Symbiosis as an adaptive process and source of phenotypic complexity , 2007 .

[18]  R. Charlton,et al.  Sublethal Effects of Three Pesticides on Activities of Selected Target and Detoxification Enzymes in the Aquatic Midge, Chironomus tentans (Diptera: Chironomidae) , 2006, Archives of environmental contamination and toxicology.

[19]  Janet Hemingway,et al.  The Innovative Vector Control Consortium: improved control of mosquito-borne diseases. , 2006, Trends in parasitology.

[20]  K. Zhu,et al.  Synergistic and antagonistic effects of atrazine on the toxicity of organophosphorodithioate and organophosphorothioate insecticides to Chironomus tentans (Diptera: Chironomidae) , 2004 .

[21]  J. Casida,et al.  Why insecticides are more toxic to insects than people: The unique toxicology of insects , 2004 .

[22]  V. Dillon,et al.  The gut bacteria of insects: nonpathogenic interactions. , 2004, Annual review of entomology.

[23]  Michel Raymond,et al.  A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non–homologous to the ace gene Drosophila , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[24]  M. Hayatsu,et al.  Nucleotide Sequence and Genetic Structure of a Novel Carbaryl Hydrolase Gene (cehA) from Rhizobium sp. Strain AC100 , 2002, Applied and Environmental Microbiology.

[25]  S. Valles,et al.  Effects of the Synergists Piperonyl Butoxide and S,S,S-Tributyl Phosphorotrithioate on Propoxur Pharmacokinetics in Blattella germanica (Blattodea: Blattellidae) , 2001, Journal of economic entomology.

[26]  J. Hemingway The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. , 2000, Insect biochemistry and molecular biology.

[27]  Carl,et al.  Isolation and Characterization of Biochemical Mutants of Bacteria , 1998 .

[28]  B. Philogéne,et al.  Insecticide synergists: role, importance, and perspectives. , 1993, Journal of toxicology and environmental health.

[29]  D. Bull,et al.  In vivo and in vitro fate of fenvalerate in house flies , 1990 .

[30]  R. Roush,et al.  Biochemistry and genetics of chlorpyrifos resistance in the German cockroach, Blattella germanica (L.). , 1990 .

[31]  J. Karns,et al.  Purification and characterization of an N-methylcarbamate pesticide hydrolyzing enzyme , 1987 .

[32]  W. S. Abbott,et al.  A method of computing the effectiveness of an insecticide. 1925. , 1925, Journal of the American Mosquito Control Association.

[33]  G. Georghiou,et al.  Mechanisms responsible for high levels of permethrin resistance in the house fly , 1986 .

[34]  P. K. Smith,et al.  Measurement of protein using bicinchoninic acid. , 1985, Analytical biochemistry.

[35]  D. Munnecke,et al.  Pathways of microbial metabolism of parathion , 1976, Applied and environmental microbiology.

[36]  E. R. Johnson,et al.  Quasi-synergism and penetration of insecticides. , 1972, Journal of Economic Entomology.

[37]  J. Casida,et al.  Properties of housefly microsomal cytochromes in relation to sex, strain, substrate specificity, and apparent inhibition and induction by synergist and insecticide chemicals. , 1970, Life sciences. Pt. 1: Physiology and pharmacology.

[38]  J. Casida,et al.  Metabolism of organic insecticide chemicals. , 1969, Canadian Medical Association journal.

[39]  J. Casida,et al.  Albumin enhancement of oxidative metabolism of methylcarbamate insecticide chemicals by the house fly microsome-NADPH2 system. , 1967, Journal of economic entomology.

[40]  K. Courtney,et al.  A new and rapid colorimetric determination of acetylcholinesterase activity. , 1961, Biochemical pharmacology.