Enhancement of dark matter relic density from late time dark matter conversions
暂无分享,去创建一个
[1] D. Hooper,et al. High energy positrons from annihilating dark matter , 2008, 0809.1683.
[2] Jonathan L. Feng,et al. Dark-matter particles without weak-scale masses or weak interactions. , 2008, Physical review letters.
[3] M. Vogelsberger,et al. Relic density and CMB constraints on dark matter annihilation with Sommerfeld enhancement , 2009, 0910.5221.
[4] A. Strumia,et al. Cosmology and Astrophysics of Minimal Dark Matter , 2007, 0706.4071.
[5] G. C. Barbarino,et al. Observation of an anomalous positron abundance in the cosmic radiation , 2008, 0810.4995.
[6] Yinlu Han,et al. Deuteron microscopic optical model potential , 2010 .
[7] Unitarity and higher order corrections in neutralino dark matter annihilation into two photons , 2002, hep-ph/0212022.
[8] J. Zupan,et al. Dark matter with a late decaying dark partner , 2008, 0810.4147.
[9] T Glanzman,et al. Measurement of the cosmic ray e+ +e- spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope. , 2009, Physical review letters.
[10] J. Zupan,et al. Dark matter with a late decaying dark partner , 2008, 0810.4147.
[11] Wan-lei Guo,et al. Exploration of decaying dark matter in a left-right symmetric model , 2010, 1001.0307.
[12] V. Springel,et al. Prospects for detecting supersymmetric dark matter in the Galactic halo , 2008, Nature.
[13] Zuowei Liu,et al. Explaining PAMELA and WMAP data through coannihilations in extended SUGRA with collider implications , 2009, 0907.5392.
[14] S. Cassel. Sommerfeld factor for arbitrary partial wave processes , 2009, 0903.5307.
[15] Joseph Silk,et al. Can the WIMP annihilation boost factor be boosted by the Sommerfeld enhancement , 2008, 0812.0360.
[16] J. Stadel,et al. Clumps and streams in the local dark matter distribution , 2008, Nature.
[17] Pasquale Dario Serpico,et al. Pulsars as the sources of high energy cosmic ray positrons , 2008, 0810.1527.
[18] S. Nasri,et al. Supersymmetric U ( 1 ) ′ model with multiple dark matters , 2007, 0710.2653.
[19] Jonathan L. Feng,et al. Halo-shape and relic-density exclusions of Sommerfeld-enhanced dark matter explanations of cosmic ray excesses. , 2009, Physical review letters.
[20] H. Murayama,et al. Breit-Wigner Enhancement of Dark Matter Annihilation , 2008, 0812.0072.
[21] J. W. Watts,et al. An excess of cosmic ray electrons at energies of 300–800 GeV , 2008, Nature.
[22] Wan-lei Guo,et al. Enhancement of dark matter annihilation via Breit-Wigner resonance , 2009, 0901.1450.
[23] Chong-Sheng Li,et al. Dark matter model with non-Abelian gauge symmetry , 2009, 0910.2831.
[24] N. Okada,et al. Type II seesaw and the PAMELA/ATIC signals , 2009, 0904.2201.
[25] K. Sigurdson,et al. Can we discover multi-component WIMP dark matter? , 2009 .
[26] T. Stanev,et al. TeV gamma rays from Geminga and the origin of the GeV positron excess. , 2008, Physical review letters.
[27] K. Zurek,et al. Multi-Component Dark Matter , 2008, 0811.4429.
[28] et al,et al. Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S. , 2009, 0905.0105.
[29] Jonathan L. Feng,et al. Hidden charged dark matter , 2009, 0905.3039.
[30] Gregory Peim,et al. Multicomponent Dark Matter in Supersymmetric Hidden Sector Extensions , 2010, 1004.0649.
[31] M. Kamionkowski,et al. Early annihilation and diffuse backgrounds in models of weakly interacting massive particles in which the cross section for pair annihilation is enhanced by 1/upsilon. , 2008, Physical review letters.
[32] Douglas P. Finkbeiner,et al. A theory of dark matter , 2008, 0810.0713.
[33] Lars Bergström,et al. Dark matter interpretation of recent electron and positron data. , 2009, Physical review letters.
[34] S. Profumo. Dissecting cosmic-ray electron-positron data with Occam’s razor: the role of known pulsars , 2008, 0812.4457.
[35] A. Sommerfeld. Über die Beugung und Bremsung der Elektronen , 1931 .
[36] P. Q. Hưng,et al. The relic density of shadow dark matter candidates , 2008, 0801.4895.
[37] Light and heavy dark matter particles , 2003, hep-ph/0311143.
[38] K. Sigurdson,et al. Can we discover dual-component thermal WIMP dark matter? , 2009, 0907.4374.
[39] Jonathan L. Feng,et al. Sommerfeld enhancements for thermal relic dark matter , 2010, 1005.4678.
[40] Tianjun Li,et al. The supersymmetric Standard Models with decaying and stable dark matters , 2010, 1001.3278.
[41] M. Pospelov,et al. Astrophysical Signatures of Secluded Dark Matter , 2008, 0810.1502.
[42] R. Iengo. Sommerfeld enhancement: general results from field theory diagrams , 2009, 0902.0688.
[43] Shigeki Matsumoto,et al. Explosive dark matter annihilation. , 2003, Physical review letters.
[44] M. Pospelov,et al. Direct detection of multicomponent secluded WIMPs , 2009, 0903.3396.
[45] S. Hannestad,et al. Sommerfeld enhancement of DM annihilation: resonance structure, freeze-out and CMB spectral bound , 2010, 1008.1511.
[46] S. Profumo. Dissecting Pamela (and ATIC) with Occam's Razor: existing, well-known Pulsars naturally account for the "anomalous" Cosmic-Ray Electron and Positron Data , 2008 .
[47] G. C. Barbarino,et al. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV , 2009, Nature.
[48] J. March-Russell,et al. WIMPonium and Boost Factors for Indirect Dark Matter Detection , 2008, 0812.0559.
[49] Jonathan L. Feng,et al. The WIMPless Miracle , 2008 .
[50] Zuowei Liu,et al. PAMELA positron excess as a signal from the hidden sector , 2008, 0810.5762.
[51] D. Finkbeiner,et al. Consistent scenarios for cosmic-ray excesses from Sommerfeld-enhanced dark matter annihilation , 2010, 1011.3082.