Enhancement of dark matter relic density from late time dark matter conversions

We demonstrate that if the dark matter (DM) in the Universe contains multiple components, the possible interactions between the DM components may convert the heavier DM components into lighter ones. It is then possible that the lightest DM component with an annihilation cross section significantly larger than that of the typical weakly interacting massive particle (WIMP) may lead to a relic density in agreement with cosmological observations, due to an enhancement of number density from the DM conversion process at late time after the thermal decoupling. This may provide an alternative source of boost factor relevant to the positron and electron excesses reported by the recent DM indirect search experiments.

[1]  D. Hooper,et al.  High energy positrons from annihilating dark matter , 2008, 0809.1683.

[2]  Jonathan L. Feng,et al.  Dark-matter particles without weak-scale masses or weak interactions. , 2008, Physical review letters.

[3]  M. Vogelsberger,et al.  Relic density and CMB constraints on dark matter annihilation with Sommerfeld enhancement , 2009, 0910.5221.

[4]  A. Strumia,et al.  Cosmology and Astrophysics of Minimal Dark Matter , 2007, 0706.4071.

[5]  G. C. Barbarino,et al.  Observation of an anomalous positron abundance in the cosmic radiation , 2008, 0810.4995.

[6]  Yinlu Han,et al.  Deuteron microscopic optical model potential , 2010 .

[7]  Unitarity and higher order corrections in neutralino dark matter annihilation into two photons , 2002, hep-ph/0212022.

[8]  J. Zupan,et al.  Dark matter with a late decaying dark partner , 2008, 0810.4147.

[9]  T Glanzman,et al.  Measurement of the cosmic ray e+ +e- spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope. , 2009, Physical review letters.

[10]  J. Zupan,et al.  Dark matter with a late decaying dark partner , 2008, 0810.4147.

[11]  Wan-lei Guo,et al.  Exploration of decaying dark matter in a left-right symmetric model , 2010, 1001.0307.

[12]  V. Springel,et al.  Prospects for detecting supersymmetric dark matter in the Galactic halo , 2008, Nature.

[13]  Zuowei Liu,et al.  Explaining PAMELA and WMAP data through coannihilations in extended SUGRA with collider implications , 2009, 0907.5392.

[14]  S. Cassel Sommerfeld factor for arbitrary partial wave processes , 2009, 0903.5307.

[15]  Joseph Silk,et al.  Can the WIMP annihilation boost factor be boosted by the Sommerfeld enhancement , 2008, 0812.0360.

[16]  J. Stadel,et al.  Clumps and streams in the local dark matter distribution , 2008, Nature.

[17]  Pasquale Dario Serpico,et al.  Pulsars as the sources of high energy cosmic ray positrons , 2008, 0810.1527.

[18]  S. Nasri,et al.  Supersymmetric U ( 1 ) ′ model with multiple dark matters , 2007, 0710.2653.

[19]  Jonathan L. Feng,et al.  Halo-shape and relic-density exclusions of Sommerfeld-enhanced dark matter explanations of cosmic ray excesses. , 2009, Physical review letters.

[20]  H. Murayama,et al.  Breit-Wigner Enhancement of Dark Matter Annihilation , 2008, 0812.0072.

[21]  J. W. Watts,et al.  An excess of cosmic ray electrons at energies of 300–800 GeV , 2008, Nature.

[22]  Wan-lei Guo,et al.  Enhancement of dark matter annihilation via Breit-Wigner resonance , 2009, 0901.1450.

[23]  Chong-Sheng Li,et al.  Dark matter model with non-Abelian gauge symmetry , 2009, 0910.2831.

[24]  N. Okada,et al.  Type II seesaw and the PAMELA/ATIC signals , 2009, 0904.2201.

[25]  K. Sigurdson,et al.  Can we discover multi-component WIMP dark matter? , 2009 .

[26]  T. Stanev,et al.  TeV gamma rays from Geminga and the origin of the GeV positron excess. , 2008, Physical review letters.

[27]  K. Zurek,et al.  Multi-Component Dark Matter , 2008, 0811.4429.

[28]  et al,et al.  Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S. , 2009, 0905.0105.

[29]  Jonathan L. Feng,et al.  Hidden charged dark matter , 2009, 0905.3039.

[30]  Gregory Peim,et al.  Multicomponent Dark Matter in Supersymmetric Hidden Sector Extensions , 2010, 1004.0649.

[31]  M. Kamionkowski,et al.  Early annihilation and diffuse backgrounds in models of weakly interacting massive particles in which the cross section for pair annihilation is enhanced by 1/upsilon. , 2008, Physical review letters.

[32]  Douglas P. Finkbeiner,et al.  A theory of dark matter , 2008, 0810.0713.

[33]  Lars Bergström,et al.  Dark matter interpretation of recent electron and positron data. , 2009, Physical review letters.

[34]  S. Profumo Dissecting cosmic-ray electron-positron data with Occam’s razor: the role of known pulsars , 2008, 0812.4457.

[35]  A. Sommerfeld Über die Beugung und Bremsung der Elektronen , 1931 .

[36]  P. Q. Hưng,et al.  The relic density of shadow dark matter candidates , 2008, 0801.4895.

[37]  Light and heavy dark matter particles , 2003, hep-ph/0311143.

[38]  K. Sigurdson,et al.  Can we discover dual-component thermal WIMP dark matter? , 2009, 0907.4374.

[39]  Jonathan L. Feng,et al.  Sommerfeld enhancements for thermal relic dark matter , 2010, 1005.4678.

[40]  Tianjun Li,et al.  The supersymmetric Standard Models with decaying and stable dark matters , 2010, 1001.3278.

[41]  M. Pospelov,et al.  Astrophysical Signatures of Secluded Dark Matter , 2008, 0810.1502.

[42]  R. Iengo Sommerfeld enhancement: general results from field theory diagrams , 2009, 0902.0688.

[43]  Shigeki Matsumoto,et al.  Explosive dark matter annihilation. , 2003, Physical review letters.

[44]  M. Pospelov,et al.  Direct detection of multicomponent secluded WIMPs , 2009, 0903.3396.

[45]  S. Hannestad,et al.  Sommerfeld enhancement of DM annihilation: resonance structure, freeze-out and CMB spectral bound , 2010, 1008.1511.

[46]  S. Profumo Dissecting Pamela (and ATIC) with Occam's Razor: existing, well-known Pulsars naturally account for the "anomalous" Cosmic-Ray Electron and Positron Data , 2008 .

[47]  G. C. Barbarino,et al.  An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV , 2009, Nature.

[48]  J. March-Russell,et al.  WIMPonium and Boost Factors for Indirect Dark Matter Detection , 2008, 0812.0559.

[49]  Jonathan L. Feng,et al.  The WIMPless Miracle , 2008 .

[50]  Zuowei Liu,et al.  PAMELA positron excess as a signal from the hidden sector , 2008, 0810.5762.

[51]  D. Finkbeiner,et al.  Consistent scenarios for cosmic-ray excesses from Sommerfeld-enhanced dark matter annihilation , 2010, 1011.3082.