Encoder combined video moving object detection

Moving object detection is the initial step of information extraction for video surveillance applications. For efficient transmission and storage, surveillance videos are compressed after capture. Existing methods usually take the compressed videos for moving object detection, which need full or partial decoding. Thus, they are not very efficient. Actually, the data generated during video encoding can be shared with detection, which avoids extra decoding. In this paper, we propose a low computation moving object detection method combined with video encoder. To avoid extra decoding, data generated during video encoding, such as Rate Distortion Cost (RDCost), are utilized for moving object detection. Experiments on a number of video sequences demonstrate its effectiveness in detection accuracy and superior processing speed.

[1]  Rita Cucchiara,et al.  Detecting Moving Objects, Ghosts, and Shadows in Video Streams , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Yu Lu,et al.  Real-time spatiotemporal segmentation of video objects in the H.264 compressed domain , 2007, J. Vis. Commun. Image Represent..

[3]  Yongdong Zhang,et al.  Automatic Detection and Analysis of Player Action in Moving Background Sports Video Sequences , 2010, IEEE Transactions on Circuits and Systems for Video Technology.

[4]  Ajay Luthra,et al.  Overview of the H.264/AVC video coding standard , 2003, IEEE Trans. Circuits Syst. Video Technol..

[5]  Dar-Shyang Lee,et al.  Effective Gaussian mixture learning for video background subtraction , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Tieniu Tan,et al.  A survey on visual surveillance of object motion and behaviors , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[7]  Jing Liu,et al.  Unsupervised Feature Selection Using Nonnegative Spectral Analysis , 2012, AAAI.

[8]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[10]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[11]  Azeddine Beghdadi,et al.  On the analysis of background subtraction techniques using Gaussian Mixture Models , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[12]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[13]  Du-Ming Tsai,et al.  Independent Component Analysis-Based Background Subtraction for Indoor Surveillance , 2009, IEEE Transactions on Image Processing.

[14]  Zhi Liu,et al.  Moving object segmentation in the H.264 compressed domain , 2007 .

[15]  Lorenzo Favalli,et al.  Object tracking for retrieval applications in MPEG-2 , 2000, IEEE Trans. Circuits Syst. Video Technol..

[16]  Z. Zivkovic Improved adaptive Gaussian mixture model for background subtraction , 2004, ICPR 2004.

[17]  B. S. Manjunath,et al.  Unsupervised Segmentation of Color-Texture Regions in Images and Video , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Lucia Maddalena,et al.  A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications , 2008, IEEE Transactions on Image Processing.

[19]  Ioannis Patras,et al.  Video Segmentation by MAP Labeling of Watershed Segments , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Zafar Shahid,et al.  Fast Protection of H.264/AVC by Selective Encryption of CAVLC and CABAC for I and P Frames , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[21]  Nikos Paragios,et al.  A MRF-based approach for real-time subway monitoring , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[22]  Yushu Liu,et al.  Moving Object Segmentation in the H.264 Compressed Domain , 2009, ACCV.

[23]  Wen Gao,et al.  Robust moving object segmentation on H.264/AVC compressed video using the block-based MRF model , 2005, Real Time Imaging.

[24]  Borko Furht,et al.  Neural Network Approach to Background Modeling for Video Object Segmentation , 2007, IEEE Transactions on Neural Networks.

[25]  Wen Gao,et al.  Modeling Background and Segmenting Moving Objects from Compressed Video , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[26]  Fatih Porikli Real-time video object segmentation for MPEG-encoded video sequences , 2004, IS&T/SPIE Electronic Imaging.

[27]  R. Venkatesh Babu,et al.  Video object segmentation: a compressed domain approach , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[28]  Yongdong Zhang,et al.  Restricted H.264/AVC video coding for privacy protected video scrambling , 2011, J. Vis. Commun. Image Represent..

[29]  Nicolas Martel-Brisson,et al.  Learning and Removing Cast Shadows through a Multidistribution Approach , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Ramesh C. Jain,et al.  On the Analysis of Accumulative Difference Pictures from Image Sequences of Real World Scenes , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Huifang Sun,et al.  Compressed Domain Video Object Segmentation , 2010, IEEE Transactions on Circuits and Systems for Video Technology.

[32]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Harish Bhaskar,et al.  Video Foreground Detection Based on Symmetric Alpha-Stable Mixture Models , 2010, IEEE Transactions on Circuits and Systems for Video Technology.

[34]  Wen Gao,et al.  Automatic moving object extraction in MPEG video , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[35]  Liang-Gee Chen,et al.  Efficient moving object segmentation algorithm using background registration technique , 2002, IEEE Trans. Circuits Syst. Video Technol..

[36]  Peter Lambert,et al.  Moving object detection in the H.264/AVC compressed domain for video surveillance applications , 2009, J. Vis. Commun. Image Represent..