A power-optimized high-speed and hig-resolution pipeline ADC with a parallel sampling first stage for broadband multi-carrier systems

This chapter analyzes the statistical properties of multi-carrier signals and their impact on ADC design, reviews the general pipeline ADC architecture and conventional low power design techniques, and presents a parallel sampling technique for pipeline ADC to convert multi-carrier signals efficiently by exploiting the statistical properties of these signals. With the proposed parallel sampling technique, the input signal power of an ADC can be boosted without getting excessive clipping distortion and the ADC can have a higher resolution over the critical small amplitude region. Hence the overall signal to noise and clipping distortion ratio is improved. This technique allows reducing power dissipation and area in comparison to conventional solutions for converting multi-carrier signals. As an example, an 11b switched-capacitor pipeline ADC with the parallel sampling technique applied to its first stage is implemented in CMOS 65 nm technology. It achieves a full-scale input signal range of 2 V differentially with a 1.2 V supply voltage. Simulations show more than 5 dB improvement in signal-to-noise-and-clipping-distortion ratio (SNCDR) and around 8 dB improvement in dynamic range (DR) compared to a conventional 11b ADC for converting multi-carrier signals, simulations also show that is able to achieve a comparable SNCDR and noise power ratio (NPR) as a conventional 12b pipeline for converting multi-carrier signals with less than half the power and area.

[1]  Tai-Cheng Lee,et al.  A 10b 100MS/s 4.5mW pipelined ADC with a time sharing technique , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[2]  M. Vertregt,et al.  A direct sampling multi-channel receiver for DOCSIS 3.0 in 65nm CMOS , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[3]  T. R. Viswanathan,et al.  Switched-capacitor circuits with reduced sensitivity to amplifier gain , 1987 .

[4]  Borivoje Nikolic,et al.  Least mean square adaptive digital background calibration of pipelined analog-to-digital converters , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Gin-Kou Ma,et al.  SHA-Less Pipelined ADC With In Situ Background Clock-Skew Calibration , 2011, IEEE Journal of Solid-State Circuits.

[6]  Chun-Ying Chen,et al.  A 12b 3GS/s pipeline ADC with 500mW and 0.4 mm2 in 40nm digital CMOS , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[7]  David A. Johns,et al.  A 50MS/s 9.9mW pipelined ADC with 58dB SNDR in 0.18µm CMOS using capacitive charge-pumps , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[8]  D. U. Thompson,et al.  A 15-b pipelined CMOS floating-point A/D converter , 2001, IEEE J. Solid State Circuits.

[9]  Tai-Cheng Lee,et al.  A 10-bit 100-MS/s 4.5-mW Pipelined ADC With a Time-Sharing Technique , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  B. Buter,et al.  A 1.2V 250mW 14b 100MS/s digitally calibrated pipeline ADC in 90nm CMOS , 2008, 2008 IEEE Symposium on VLSI Circuits.

[11]  Bang-Sup Song,et al.  A 12-bit 1-Msample/s capacitor error-averaging pipelined A/D converter , 1988 .

[12]  Boris Murmann,et al.  A/D converter trends: Power dissipation, scaling and digitally assisted architectures , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[13]  Claudio Nani,et al.  A 480 mW 2.6 GS/s 10b Time-Interleaved ADC With 48.5 dB SNDR up to Nyquist in 65 nm CMOS , 2011, IEEE Journal of Solid-State Circuits.

[14]  Yu Lin,et al.  An 11b pipeline ADC with dual sampling technique for converting multi-carrier signals , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[15]  Haruo Kobayashi,et al.  Explicit analysis of channel mismatch effects in time-interleaved ADC systems , 2001 .

[16]  D. Mestdagh,et al.  Effect of amplitude clipping in DMT-ADSL transceivers , 1993 .

[17]  I. Mehr,et al.  A 55-mW, 10-bit, 40-Msample/s Nyquist-rate CMOS ADC , 2000 .

[18]  Stephen H. Lewis,et al.  A 10-b 20-Msample/s analog-to-digital converter , 1992 .

[19]  Ieee Std,et al.  IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters , 2011 .

[20]  B. Murmann,et al.  A 9.4-bit, 50-MS/s, 1.44-mW pipelined ADC using dynamic residue amplification , 2008, 2008 IEEE Symposium on VLSI Circuits.

[21]  P. R. Gray,et al.  A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter , 1999, IEEE J. Solid State Circuits.

[22]  S. H. Lewis,et al.  A pipelined 5-Msample/s 9-bit analog-to-digital converter , 1987 .

[23]  Harald Haas,et al.  Asilomar Conference on Signals, Systems, and Computers , 2006 .

[24]  M. Waltari,et al.  A 10-bit 200 MS/s CMOS parallel pipeline A/D converter , 2001, Proceedings of the 26th European Solid-State Circuits Conference.

[25]  B. Murmann,et al.  A 12 b 75 MS/s pipelined ADC using open-loop residue amplification , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[26]  Yu Lin,et al.  An 11b Pipeline ADC With Parallel-Sampling Technique for Converting Multi-Carrier Signals , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[27]  Zhu Han,et al.  Sampling rate reduction for 60 GHz UWB communication using compressive sensing , 2009, 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers.

[28]  Chun-Ying Chen,et al.  A 12-Bit 3 GS/s Pipeline ADC With 0.4 mm$^{2}$ and 500 mW in 40 nm Digital CMOS , 2012, IEEE Journal of Solid-State Circuits.

[29]  Hae-Seung Lee,et al.  A 12b 50MS/s fully differential zero-crossing-based ADC without CMFB , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[30]  Matthias Frey,et al.  On the Static Resolution of Digitally Corrected Analog-to-Digital and Digital-to-Analog Converters With Low-Precision Components , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[31]  Kazuki Sobue,et al.  Ring Amplifiers for Switched Capacitor Circuits , 2012, IEEE Journal of Solid-State Circuits.

[32]  Paul R. Gray,et al.  A power optimized 13-b 5 Msamples/s pipelined analog-to-digital converter in 1.2 /spl mu/m CMOS , 1996 .

[33]  C. Schwoerer,et al.  An 80 MHz 10 b pipeline ADC with dynamic range doubling and dynamic reference selection , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[34]  Lutz H.-J. Lampe,et al.  Challenges and recent advances in IR-UWB system design , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[35]  Un-Ku Moon,et al.  Background digital calibration techniques for pipelined ADCs , 1997 .

[36]  van Pcw Pieter Beek,et al.  Multi-carrier single-DAC transmitter approach applied to digital cable television , 2011 .

[37]  Claudio Nani,et al.  A 480mW 2.6GS/s 10b 65nm CMOS time-interleaved ADC with 48.5dB SNDR up to Nyquist , 2011, 2011 IEEE International Solid-State Circuits Conference.

[38]  Jipeng Li,et al.  A 1.8-V 67-mW 10-bit 100-MS/s pipelined ADC using time-shifted CDS technique , 2004 .

[39]  Ian Galton,et al.  Digital Background Correction of Harmonic Distortion in Pipelined ADCs , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[40]  Arthur H. M. van Roermund,et al.  Power Optimization for Pipelined ADCs with Open-Loop Residue Amplifiers , 2006, 2006 13th IEEE International Conference on Electronics, Circuits and Systems.

[41]  Michiel Steyaert,et al.  Speed-power-accuracy tradeoff in high-speed CMOS ADCs , 2002 .