Comprehensive Analysis of the Geoeffective Solar Event of 21 June 2015: Effects on the Magnetosphere, Plasmasphere, and Ionosphere Systems

A full-halo coronal mass ejection (CME) left the Sun on 21 June 2015 from active region (AR) NOAA 12371. It encountered Earth on 22 June 2015 and generated a strong geomagnetic storm whose minimum Dst value was −204 nT. The CME was associated with an M2-class flare observed at 01:42 UT, located near disk center (N12 E16). Using satellite data from solar, heliospheric, and magnetospheric missions and ground-based instruments, we performed a comprehensive Sun-to-Earth analysis. In particular, we analyzed the active region evolution using ground-based and satellite instruments (Big Bear Solar Observatory (BBSO), Interface Region Imaging Spectrograph (IRIS), Hinode, Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO), Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), covering Hα$\upalpha$, EUV, UV, and X-ray data); the AR magnetograms, using data from SDO/Helioseismic and Magnetic Imager (HMI); the high-energy particle data, using the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument; and the Rome neutron monitor measurements to assess the effects of the interplanetary perturbation on cosmic-ray intensity. We also evaluated the 1 – 8 Å soft X-ray data and the ∼1${\sim}\, 1$ MHz type III radio burst time-integrated intensity (or fluence) of the flare in order to predict the associated solar energetic particle (SEP) event using the model developed by Laurenza et al. (Space Weather7(4), 2009). In addition, using ground-based observations from lower to higher latitudes (International Real-time Magnetic Observatory Network (INTERMAGNET) and European Quasi-Meridional Magnetometer Array (EMMA)), we reconstructed the ionospheric current system associated with the geomagnetic sudden impulse (SI). Furthermore, Super Dual Auroral Radar Network (SuperDARN) measurements were used to image the global ionospheric polar convection during the SI and during the principal phases of the geomagnetic storm. In addition, to investigate the influence of the disturbed electric field on the low-latitude ionosphere induced by geomagnetic storms, we focused on the morphology of the crests of the equatorial ionospheric anomaly by the simultaneous use of the Global Navigation Satellite System (GNSS) receivers, ionosondes, and Langmuir probes onboard the Swarm constellation satellites. Moreover, we investigated the dynamics of the plasmasphere during the different phases of the geomagnetic storm by examining the time evolution of the radial profiles of the equatorial plasma mass density derived from field line resonances detected at the EMMA network (1.5<L<6.5$1.5 < \mathrm{L} < 6.5$). Finally, we present the general features of the geomagnetic response to the CME by applying innovative data analysis tools that allow us to investigate the time variation of ground-based observations of the Earth’s magnetic field during the associated geomagnetic storm.

[1]  S. Kawamura,et al.  A physical mechanism of positive ionospheric storms at low latitudes and midlatitudes , 2010 .

[2]  Bela G. Fejer,et al.  Seasonal and longitudinal dependence of equatorial disturbance vertical plasma drifts , 2008 .

[3]  Arthur D. Richmond,et al.  The ionospheric disturbance dynamo , 1980 .

[4]  Ronald F. Woodman,et al.  Vertical drift velocities and east‐west electric fields at the magnetic equator , 1970 .

[5]  R. Hunsucker Auroral and polar-cap ionospheric effects on radio propagation , 1992 .

[6]  M. L. Kaiser,et al.  A technique for short‐term warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape , 2009 .

[7]  S. M. Krylov,et al.  High resolution method of direct measurement of the magnetic field lines' eigen frequencies , 1985 .

[8]  M. Piersanti,et al.  Analysis of geomagnetic sudden impulses at low latitudes , 2009 .

[9]  Byung-Ho Ahn,et al.  The Joule heat production rate and the particle energy injection rate as a function of the geomagnetic indices AE and AL , 1983 .

[10]  D. L. Carpenter Whistler evidence of a ‘knee’ in the magnetospheric ionization density profile , 1963 .

[11]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  J. Davila,et al.  Three-Dimensional Polarimetric Imaging of Coronal Mass Ejections , 2004, Science.

[13]  E. Valtonen Space weather effects on technology , 2005 .

[14]  F. Zuccarello,et al.  EVOLUTION OF THE MAGNETIC HELICITY FLUX DURING THE FORMATION AND ERUPTION OF FLUX ROPES , 2014 .

[15]  A. Jorgensen,et al.  The plasmasphere during a space weather event: first results from the PLASMON project , 2013 .

[16]  H. W. Kroehl,et al.  What is a geomagnetic storm , 1994 .

[17]  J. Richardson,et al.  PLASMA AND MAGNETIC FIELD CHARACTERISTICS OF SOLAR CORONAL MASS EJECTIONS IN RELATION TO GEOMAGNETIC STORM INTENSITY AND VARIABILITY , 2015, 1508.01267.

[18]  Donald V. Reames,et al.  Particle acceleration at the Sun and in the heliosphere , 2013 .

[19]  N. Tsyganenko,et al.  Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms , 2005 .

[20]  N. G. Ptitsyna,et al.  Space weather conditions and spacecraft anomalies in different orbits , 2005 .

[21]  C. Schrijver,et al.  Photospheric and heliospheric magnetic fields , 2003 .

[22]  Peter. Dyson,et al.  A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions , 2007 .

[23]  W. Kolasinski,et al.  Injection of electrons and protons with energies of tens of MeV into L < 3 on 24 March 1991. (Reannouncement with new availability information) , 1992 .

[24]  M. Moldwin Outer Plasmaspheric Plasma Properties: What We Know from Satellite Data , 1997 .

[25]  P. Coleman,et al.  Sudden impulses in the magnetosphere observed at synchronous orbit , 1970 .

[26]  M. Piersanti,et al.  Magnetospheric plasma density inferred from field line resonances: Effects of using different magnetic field models , 2014, 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS).

[27]  Michael Pezzopane,et al.  Comparative analysis of spread‐F signature and GPS scintillation occurrences at Tucumán, Argentina , 2013 .

[28]  Sandro M. Radicella,et al.  Calibration errors on experimental slant total electron content (TEC) determined with GPS , 2007 .

[29]  H. Cane Coronal Mass Ejections and Forbush Decreases , 2000 .

[30]  G. Siscoe,et al.  Hill model of transpolar potential saturation: Comparisons with MHD simulations , 2002 .

[31]  Markus J. Aschwanden,et al.  Particle acceleration and kinematics in solar flares – A Synthesis of Recent Observations and Theoretical Concepts (Invited Review) , 2002 .

[32]  P. Fagundes,et al.  Observations and modeling of post-midnight uplifts near the magnetic equator , 2006 .

[33]  B. Tsurutani,et al.  Interplanetary shock triggering of nightside geomagnetic activity: Substorms, pseudobreakups, and quiescent events , 2001 .

[34]  G. W. Sharp,et al.  The morphology of the bulge region of the plasmasphere , 1970 .

[35]  L. Lyons,et al.  Geosynchronous magnetic field response to solar wind dynamic pressure pulse , 2004 .

[36]  H. Zirin,et al.  Vector magnetic field changes associated with X-class flares , 1994 .

[37]  M. Piersanti,et al.  An analysis of sudden impulses at geosynchronous orbit , 2008 .

[38]  Ermanno Pietropaolo,et al.  Comparison of equatorial plasma mass densities deduced from field line resonances observed at ground for dipole and IGRF models , 2014 .

[39]  E. Yizengaw,et al.  Geomagnetically induced currents around the world during the 17 March 2015 storm , 2016 .

[40]  Henry Rishbeth,et al.  Polarization fields produced by winds in the equatorial F-region , 1971 .

[41]  T. Kikuchi,et al.  Local time variation of the amplitude of geomagnetic sudden commencements (SC) and SC-associated polar cap potential , 2009 .

[42]  Mark B. Moldwin,et al.  Computing magnetospheric mass density from field line resonances in a realistic magnetic field geometry , 2006 .

[43]  G. Petrie,et al.  THE ABRUPT CHANGES IN THE PHOTOSPHERIC MAGNETIC AND LORENTZ FORCE VECTORS DURING SIX MAJOR NEUTRAL-LINE FLARES , 2012, 1211.2210.

[44]  A. Mannucci,et al.  Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30-31 October 2003 , 2008 .

[45]  Ian R. Mann,et al.  Ground magnetometer observation of a cross‐phase reversal at a steep plasmapause , 2007 .

[46]  R. Casini,et al.  A suite of community tools for spectro-polarimetric analysis . , 2007 .

[47]  F. Giorgi,et al.  Fractal and Multifractal Properties of Active Regions as Flare Precursors: A Case Study Based on SOHO/MDI and SDO/HMI Observations , 2014 .

[48]  B. Tsurutani,et al.  Acceleration of >47 keV Ions and >2 keV electrons by interplanetary shocks at 1 AU , 1985 .

[49]  H. Lühr,et al.  Swarm An Earth Observation Mission investigating Geospace , 2008 .

[50]  C. J. Wolfson,et al.  The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) , 2011 .

[51]  M. Georgoulis,et al.  Vertical Lorentz Force and Cross-Field Currents in the Photospheric Magnetic Fields of Solar Active Regions , 2004 .

[52]  S. Gosain,et al.  THE EVOLUTION OF THE TWIST SHEAR AND DIP SHEAR DURING X-CLASS FLARE OF 2006 DECEMBER 13: HINODE OBSERVATIONS , 2010, 1007.2702.

[53]  J. M. Ruohoniemi,et al.  Large-scale imaging of high-latitude convection with Super Dual Auroral Radar Network HF radar observations , 1998 .

[54]  Daniel T. Welling,et al.  Multispacecraft observations and modeling of the 22/23 June 2015 geomagnetic storm , 2016 .

[55]  I. Batista,et al.  Electrodynamic disturbances in the Brazilian equatorial and low‐latitude ionosphere on St. Patrick's Day storm of 17 March 2015 , 2017 .

[56]  B. Jurcevich,et al.  The Solar Optical Telescope for the Hinode Mission: An Overview , 2007, 0711.1715.

[57]  G. A. Gary,et al.  Correlation of the Coronal Mass Ejection Productivity of Solar Active Regions with Measures of Their Global Nonpotentiality from Vector Magnetograms: Baseline Results , 2002 .

[58]  J. Simpson,et al.  Energetic protons accelerated at corotating shocks: Pioneer 10 and 11 observations from 1 to 6 AU , 1982 .

[59]  Bruce T. Tsurutani,et al.  An extreme coronal mass ejection and consequences for the magnetosphere and Earth , 2014 .

[60]  P. Pagano,et al.  Uncertainties in polarimetric 3D reconstructions of coronal mass ejections , 2015, 1503.00314.

[61]  D. Baker,et al.  Energetic particle injections in the inner magnetosphere as a response to an interplanetary shock , 2003 .

[62]  T. Yokoyama,et al.  Duskside enhancement of equatorial zonal electric field response to convection electric fields during the St. Patrick's Day storm on 17 March 2015 , 2016 .

[63]  Alessandro P. Cerruti,et al.  Scintillation‐producing Fresnel‐scale irregularities associated with the regions of steepest TEC gradients adjacent to the equatorial ionization anomaly , 2010 .

[64]  S. Criscuoli,et al.  The Signature of Flare Activity in Multifractal Measurements of Active Regions Observed by SDO/HMI , 2015, 1705.06708.

[65]  Michelle F. Thomsen,et al.  Necessary conditions for geosynchronous magnetopause crossings , 2005 .

[66]  High-speed photospheric material flow observed at the polarity inversion line of a δ-type sunspot producing an X5.4 flare on 2012 March 7 (Special Issue : Recent results from Hinode) , 2014, 1406.1617.

[67]  Haimin Wang,et al.  Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope , 2016, Scientific Reports.

[68]  Monica G. Bobra,et al.  SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM , 2014, 1411.1405.

[69]  N. Tsyganenko,et al.  A model of the near magnetosphere with a dawn-dusk asymmetry 1. Mathematical structure , 2002 .

[70]  J. T. Hoeksema,et al.  The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO) , 2012 .

[71]  J. Wanliss,et al.  High-resolution global storm index: Dst versus SYM-H , 2006 .

[72]  B. Welsch,et al.  A MAGNETIC CALIBRATION OF PHOTOSPHERIC DOPPLER VELOCITIES , 2012, 1201.2451.

[73]  Jesper Schou,et al.  The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance , 2014, 1404.1881.

[74]  Bruce T. Tsurutani,et al.  Interplanetary origin of geomagnetic storms , 1999 .

[75]  Mark B. Moldwin,et al.  Empirical plasmapause models from magnetic indices , 2003 .

[76]  Bodo W. Reinisch,et al.  Global Ionospheric Radio Observatory (GIRO) , 2011 .

[77]  M. Vellante,et al.  Inference of the magnetospheric plasma mass density from field line resonances: A test using a plasmasphere model , 2006 .

[78]  M. Hudson,et al.  Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC , 1993 .

[79]  Colin L. Waters,et al.  The 8 June 2000 ULF wave activity: A case study , 2012 .

[80]  C. Russell,et al.  Structure of the November 12, 1978, quasi‐parallel interplanetary shock , 1984 .

[81]  J. Aarons The role of the ring current in the generation or inhibition of equatorial F layer irregularities during magnetic storms , 1991 .

[82]  W. Wan,et al.  Anomalous enhancement of ionospheric electron content in the Asian-Australian region during a geomagnetically quiet day , 2008 .

[83]  B. Tsurutani,et al.  Observations of the interplanetary sector structure up to heliographic latitudes of 16°: Pioneer 11 , 1978 .

[84]  C. J. Schrijver,et al.  Driving major solar flares and eruptions: A review , 2008, 0811.0787.

[85]  J. Lemaire,et al.  The Earth's Plasmasphere: Frontmatter , 1998 .

[86]  L. Lyu Space Weather Study Using Multipoint Techniques , 2002 .

[87]  V. Angelopoulos,et al.  Plasmaspheric depletion and refilling associated with the September 25, 1998 magnetic storm observed by ground magnetometers at L = 2 , 2000 .

[88]  S. Sazykin,et al.  Penetration electric fields: Efficiency and characteristic time scale , 2007 .

[89]  R. Greenwald,et al.  The response of high‐latitude convection to a sudden southward IMF turning , 1998 .

[90]  A. Komjathy,et al.  Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween Storms” , 2005 .

[91]  Vincenzo Carbone,et al.  Timescale separation in the solar wind‐magnetosphere coupling during St. Patrick's Day storms in 2013 and 2015 , 2017 .

[92]  A. Mannucci,et al.  The October 28, 2003 extreme EUV solar flare and resultant extreme ionospheric effects: Comparison to other Halloween events and the Bastille Day event , 2005 .

[93]  J. T. Hoeksema,et al.  The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs – Space-Weather HMI Active Region Patches , 2014, 1404.1879.

[94]  C. Alissandrakis,et al.  On the computation of constant alpha force-free magnetic field , 1981 .

[95]  T. Kosugi,et al.  The Hinode (Solar-B) Mission: An Overview , 2007 .

[96]  J. Torsti,et al.  Hybrid Solar Energetic Particle Events Observed on Board Soho , 2002 .

[97]  M. Piersanti,et al.  On the discrimination between magnetospheric and ionospheric contributions on the ground manifestation of sudden impulses , 2016 .

[98]  D. Baker,et al.  A telescopic and microscopic examination of acceleration in the June 2015 geomagnetic storm: Magnetospheric Multiscale and Van Allen Probes study of substorm particle injection , 2016 .

[99]  C. Park Whistler observations of the depletion of the plasmasphere during a magnetospheric substorm , 1973 .

[100]  T. Zurbuchen,et al.  In-Situ Solar Wind and Magnetic Field Signatures of Interplanetary Coronal Mass Ejections , 2006 .

[101]  Hideaki Kawano,et al.  Magnetopause location under extreme solar wind conditions , 1998 .

[102]  Yukio Katsukawa,et al.  The Hinode Spectro-Polarimeter , 2013 .

[103]  S. Forbush On diurnal variation in cosmic-ray intensity , 1937 .

[104]  J. Kóta,et al.  Acceleration of Solar-Energetic Particles by Shocks , 2007 .

[105]  K. R. Lorentzen,et al.  Multisatellite observations of MeV ion injections during storms , 2002 .

[106]  G. Barnes,et al.  Photospheric Magnetic Field Properties of Flaring versus Flare-quiet Active Regions. IV. A Statistically Significant Sample , 2007 .

[107]  S. Kokubun Characteristics of storm sudden commencement at geostationary orbit , 1983 .

[108]  F. Mariani,et al.  Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP-8 observations , 1981 .

[109]  Vincenzo Carbone,et al.  Identification of the different magnetic field contributions during a geomagnetic storm in magnetospheric and ground observations , 2016 .

[110]  Toshitaka Tsuda,et al.  Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields , 2004 .

[111]  E. Parker,et al.  Hydromagnetic theory of geomagnetic storms , 1959 .

[112]  G. C. Barbarino,et al.  The PAMELA Mission: Heralding a new era in precision cosmic ray physics , 2014 .

[113]  B. Tsurutani,et al.  Acceleration of energetic protons by interplanetary shocks , 1979 .

[114]  Masahisa Sugiura,et al.  Auroral electrojet activity index AE and its universal time variations. , 1966 .

[115]  J. Dungey Interplanetary Magnetic Field and the Auroral Zones , 1961 .

[116]  A. Dmitriev,et al.  Geosynchronous magnetopause crossings on 29–31 October 2003 , 2005 .

[117]  B. Tsurutani,et al.  Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979) , 1988 .

[118]  B. Tsurutani,et al.  Geomagnetic sudden impulses and storm sudden commencements - A note on terminology , 1990 .

[119]  Norbert Sckopke,et al.  A general relation between the energy of trapped particles and the disturbance field near the Earth , 1966 .

[120]  Y. Kamide,et al.  Two‐component auroral electrojet: Importance for substorm studies , 1996 .

[121]  S. Wu,et al.  Data-driven magnetohydrodynamic modelling of a flux-emerging active region leading to solar eruption , 2016, Nature Communications.

[122]  G. W. Prölss Ionospheric F-Region Storms , 2017 .

[123]  C. G. Park,et al.  Some features of plasma distribution in the plasmasphere deduced from Antarctic whistlers , 1974 .

[124]  W. I. Axford,et al.  PARTICLE ACCELERATION IN GEOSPACE AND ITS ASSOCIATION WITH SOLAR EVENTS , 1997 .

[125]  M. Karlický,et al.  The X17.2 flare occurred in NOAA 10486: an example of filament destabilization caused by a domino effect , 2009 .

[126]  Ian R. Mann,et al.  Remote sensing the plasmasphere, plasmapause, plumes and other features using ground-based magnetometers , 2014 .

[127]  Barry J. Fraser,et al.  The resonance structure of low latitude Pc3 geomagnetic pulsations , 1991 .

[128]  A. Hundhausen,et al.  Sizes and locations of coronal mass ejections - SMM observations from 1980 and 1984-1989 , 1993 .

[129]  M. Shea,et al.  The applicability of model based aircraft radiation dose estimates , 2005 .

[130]  S. Freeland,et al.  Data Analysis with the SolarSoft System , 1998 .

[131]  G. Consolini,et al.  Local intermittency measure analysis of AE index: The directly driven and unloading component , 2005 .

[132]  K. D. Leka,et al.  Photospheric Magnetic Field Properties of Flaring versus Flare-quiet Active Regions. I. Data, General Approach, and Sample Results , 2003 .

[133]  M. Temmer,et al.  HELIOSPHERIC PROPAGATION OF CORONAL MASS EJECTIONS: DRAG-BASED MODEL FITTING , 2015, 1506.08582.

[134]  D. Baker,et al.  Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015 , 2016, Journal of geophysical research. Space physics.

[135]  R. Greenwald,et al.  Cross polar cap potentials measured with Super Dual Auroral Radar Network during quasi‐steady solar wind and interplanetary magnetic field conditions , 2002 .

[136]  G. Consolini,et al.  Principal components' features of mid-latitude geomagnetic daily variation , 2010 .

[137]  G. C. Barbarino,et al.  OBSERVATIONS OF THE 2006 DECEMBER 13 AND 14 SOLAR PARTICLE EVENTS IN THE 80 MeV n−1–3 GeV n−1 RANGE FROM SPACE WITH THE PAMELA DETECTOR , 2011, 1107.4519.

[138]  Bodo W. Reinisch,et al.  The universal digital ionosonde , 1978 .

[139]  Fabio Dovis,et al.  Formation of ionospheric irregularities over Southeast Asia during the 2015 St. Patrick's Day storm , 2016 .

[140]  W. Pesnell,et al.  The Solar Dynamics Observatory (SDO) , 2012 .

[141]  Bruno Bougard,et al.  L-band scintillations and calibrated total electron content gradients over Brazil during the last solar maximum , 2015 .

[142]  B. Tsurutani,et al.  Interplanetary shock triggering of substorms: WIND and Polar , 2003 .

[143]  Irina Zakharenkova,et al.  Prompt penetration electric fields and the extreme topside ionospheric response to the June 22–23, 2015 geomagnetic storm as seen by the Swarm constellation , 2016, Earth, Planets and Space.

[144]  Carolus J. Schrijver,et al.  A Characteristic Magnetic Field Pattern Associated with All Major Solar Flares and Its Use in Flare Forecasting , 2007 .

[145]  M. Falco,et al.  DYNAMIC PROPERTIES ALONG THE NEUTRAL LINE OF A DELTA SPOT INFERRED FROM HIGH-RESOLUTION OBSERVATIONS , 2014 .

[146]  A. Mannucci,et al.  A brief review of “solar flare effects” on the ionosphere , 2009 .

[147]  Y. Feldstein,et al.  Quiet and disturbed solar-daily variations of magnetic field at high latitudes during the IGY , 1968 .

[148]  R. Anderson,et al.  An ISEE/Whistler model of equatorial electron density in the magnetosphere , 1992 .

[149]  T. Araki A Physical Model of the Geomagnetic Sudden Commencement , 2013 .

[150]  G. Consolini,et al.  Solar Activity from 2006 to 2014 and Short-term Forecasts of Solar Proton Events Using the ESPERTA Model , 2017 .

[151]  L. Scherliess,et al.  Time dependent response of equatorial ionospheric electric fields to magnetospheric disturbances , 1995 .

[152]  B. Reinisch,et al.  Dayside ionospheric response to the intense interplanetary shocks–solar wind discontinuities: Observations from the digisonde global ionospheric radio observatory , 2010 .

[153]  Manolis K. Georgoulis,et al.  A New Technique for a Routine Azimuth Disambiguation of Solar Vector Magnetograms , 2005 .