A generalized Kac–Ward formula

The Kac–Ward formula allows the Ising partition function to be computed on a planar graph G with straight edges from the determinant of a matrix of size 2N, where N denotes the number of edges of G. In this paper, we extend this formula to any finite graph: the partition function can be written as an alternating sum of the determinants of 22g matrices of size 2N, where g is the genus of an orientable surface in which G embeds. We give two proofs of this generalized formula. The first one is purely combinatorial, while the second relies on the Fisher–Kasteleyn reduction of the Ising model to the dimer model, and on geometric techniques. As a consequence of this second proof, we also obtain the following fact: the Kac–Ward and the Fisher–Kasteleyn methods for solving the Ising model are one and the same.

[1]  R. B. Potts,et al.  The Combinatrial Method and the Two-Dimensional Ising Model , 1955 .

[2]  B. L. Waerden Die lange Reichweite der regelmäßigen Atomanordnung in Mischkristallen , 1941 .

[3]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[4]  Glenn Tesler,et al.  Matchings in Graphs on Non-orientable Surfaces , 2000, J. Comb. Theory, Ser. B.

[5]  Nicolai Reshetikhin,et al.  Dimers on Surface Graphs and Spin Structures. I , 2006, math-ph/0608070.

[6]  S. Sherman Combinatorial Aspects of the Ising Model for Ferromagnetism. I. A Conjecture of Feynman on Paths and Graphs , 1960 .

[7]  David Cimasoni Dimers on Graphs in Non-Orientable Surfaces , 2008, 0804.4772.

[8]  Dennis Johnson Spin Structures and Quadratic forms on Surfaces , 1980 .

[9]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .

[10]  H. S. Green,et al.  New Solution of the Ising Problem for a Rectangular Lattice , 1960 .

[11]  P. W. Kasteleyn The Statistics of Dimers on a Lattice , 1961 .

[12]  D. Zeilberger,et al.  A Combinatorial Proof of Bass’s Evaluations of the Ihara-Selberg Zeta Function for Graphs , 1998, math/9806037.

[13]  Martin Loebl,et al.  On the Theory of Pfaffian Orientations. I. Perfect Matchings and Permanents , 1998, Electron. J. Comb..

[14]  M. Kac,et al.  A combinatorial solution of the two-dimensional Ising model , 1952 .

[15]  Sergei Evdokimov,et al.  On Highly Closed Cellular Algebras and Highly Closed Isomorphisms , 1998, Electron. J. Comb..

[16]  Гомологические свойства димерных покрытий решеток на поверхностях@@@Homological Properties of Dimer Configurations for Lattices on Surfaces , 1996 .

[17]  M. Fisher On the Dimer Solution of Planar Ising Models , 1966 .

[18]  Martin Loebl A Discrete Non-Pfaffian Approach to the Ising Problem , 2001, Graphs, Morphisms and Statistical Physics.

[19]  Двумерная модель Изинга и детерминант Каца - Уорда@@@The two-dimensional Ising model and the Kac - Ward determinant , 1999 .

[20]  H. Bass THE IHARA-SELBERG ZETA FUNCTION OF A TREE LATTICE , 1992 .

[21]  P. W. Kasteleyn Dimer Statistics and Phase Transitions , 1963 .

[22]  M. Loebl,et al.  On the optimality of the Arf invariant formula for graph polynomials , 2009, 0908.2925.

[23]  M. Fisher Statistical Mechanics of Dimers on a Plane Lattice , 1961 .

[24]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[25]  B. Kaufman Crystal Statistics: II. Partition Function Evaluated by Spinor Analysis. III. Short-Range Order in a Binary Ising Lattice. , 1949 .