Model Checking Real-Time Properties of Symmetric Systems

We develop efficient algorithms for model checking quantitative properties of symmetric reactive systems in the general framework of a Real-Time Mu-calculus. Previous work has been limited to qualitative correctness properties. Our work not only permits handling of quantitative correctness, but it provides a strictly more expressive framework for qualitative correctness since the Mu-calculus strictly subsumes, e.g, CTL. Unlike the previous “group-theoretic” approaches of [CE96] and [ES96] and the technical “automata-theoretic” approach of [ES97], our new approach may be viewed as “model-theoretic”.

[1]  A. Prasad Sistla,et al.  On-the-Fly Model Checking Under Fairness that Exploits Symmetry , 1999, Formal Methods Syst. Des..

[2]  Helmut Seidl,et al.  A modal /spl mu/-calculus for durational transition systems , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[3]  Philippe Schnoebelen,et al.  The Complexity of Propositional Linear Temporal Logics in Simple Cases (Extended Abstract) , 1998, STACS.

[4]  Helmut Seidl Printed Copies: a Modal {calculus for Durational Transition Systems a Modal {calculus for Durational Transition Systems , 1995 .

[5]  Somesh Jha,et al.  Exploiting Symmetry In Temporal Logic Model Checking , 1993, CAV.

[6]  Somesh Jha,et al.  Exploiting symmetry in temporal logic model checking , 1993, Formal Methods Syst. Des..

[7]  David L. Dill,et al.  Better verification through symmetry , 1996, Formal Methods Syst. Des..

[8]  Chin-Laung Lei,et al.  Efficient Model Checking in Fragments of the Propositional Mu-Calculus (Extended Abstract) , 1986, LICS.

[9]  Somesh Jha,et al.  An Improved Algorithm for the Evaluation of Fixpoint Expressions , 1997, Theor. Comput. Sci..

[10]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[11]  A. Prasad Sistla,et al.  Symmetry and model checking , 1993, Formal Methods Syst. Des..

[12]  E. Emerson,et al.  Modalities for model checking (extended abstract): branching time strikes back , 1985, ACM-SIGACT Symposium on Principles of Programming Languages.

[13]  Amir Pnueli,et al.  Checking that finite state concurrent programs satisfy their linear specification , 1985, POPL.

[14]  Somesh Jha,et al.  An Improved Algorithm for the Evaluation of Fixpoint Expressions , 1994, Theor. Comput. Sci..

[15]  A. Prasad Sistla,et al.  Utilizing symmetry when model-checking under fairness assumptions: an automata-theoretic approach , 1997, TOPL.

[16]  Thomas A. Henzinger,et al.  The temporal specification and verification of real-time systems , 1991 .

[17]  Joseph Y. Halpern,et al.  “Sometimes” and “not never” revisited: on branching versus linear time temporal logic , 1986, JACM.

[18]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[19]  R. Alur Techniques for automatic verification of real-time systems , 1991 .

[20]  E. Allen Emerson,et al.  Real-Time and the Mu-Calculus (Preliminary Report) , 1991, REX Workshop.

[21]  A. EmersonE.,et al.  Utilizing symmetry when model-checking under fairness assumptions , 1997 .

[22]  Chin-Laung Lei,et al.  Modalities for Model Checking: Branching Time Logic Strikes Back , 1987, Sci. Comput. Program..

[23]  A. Prasad Sistla,et al.  On-the-Fly Model Checking Under Fairness That Exploits Symmetry , 1997, CAV.

[24]  Grzegorz Rozenberg,et al.  High-level Petri Nets: Theory And Application , 1991 .