Correction: Dissecting cancer heterogeneity based on dimension reduction of transcriptomic profiles using extreme learning machines

[This corrects the article DOI: 10.1371/journal.pone.0203824.].

[1]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[2]  A. Nobel,et al.  Statistical Significance of Clustering for High-Dimension, Low–Sample Size Data , 2008 .

[3]  F. Giroud,et al.  Adaptive Dissimilarity Index for Gene Expression Profiles Classification , 2007 .

[4]  John M. Hancock Self‐Organizing Map (Kohonen Map, SOM) , 2004 .

[5]  L. Vermeulen,et al.  Colorectal cancer heterogeneity and targeted therapy: a case for molecular disease subtypes. , 2015, Cancer research.

[6]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[7]  Pablo Tamayo,et al.  Metagenes and molecular pattern discovery using matrix factorization , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  John M. Hancock Self‐Organizing Map (SOM, Kohonen Map) , 2014 .

[9]  Jason G. Jin,et al.  Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes , 2015, Nature Medicine.

[10]  Xin Wang,et al.  Dissecting cancer heterogeneity--an unsupervised classification approach. , 2013, The international journal of biochemistry & cell biology.

[11]  T. Tong,et al.  Cancer statistics, 1994 , 1994, CA: a cancer journal for clinicians.

[12]  O. Elemento,et al.  DNA methylation signatures define molecular subtypes of diffuse large B-cell lymphoma. , 2010, Blood.

[13]  Jeffrey S. Morris,et al.  The Consensus Molecular Subtypes of Colorectal Cancer , 2015, Nature Medicine.

[14]  L. Vermeulen,et al.  Cancer heterogeneity—a multifaceted view , 2013, EMBO reports.

[15]  Alfonso Valencia,et al.  A hierarchical unsupervised growing neural network for clustering gene expression patterns , 2001, Bioinform..

[16]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[17]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[18]  Robert Tibshirani,et al.  Estimating the number of clusters in a data set via the gap statistic , 2000 .

[19]  Nan Lin,et al.  Information criterion-based clustering with order-restricted candidate profiles in short time-course microarray experiments , 2009, BMC Bioinformatics.

[20]  Xiaohua Hu,et al.  Microarray Gene Cluster Identification and Annotation Through Cluster Ensemble and EM-Based Informative Textual Summarization , 2009, IEEE Transactions on Information Technology in Biomedicine.

[21]  Dirk Troost,et al.  Integrated Genomics Identifies Five Medulloblastoma Subtypes with Distinct Genetic Profiles, Pathway Signatures and Clinicopathological Features , 2008, PloS one.

[22]  Jill P. Mesirov,et al.  Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data , 2003, Machine Learning.

[23]  Matthew D. Wilkerson,et al.  ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking , 2010, Bioinform..

[24]  Insuk Sohn,et al.  Nanostring-Based Multigene Assay to Predict Recurrence for Gastric Cancer Patients after Surgery , 2014, PloS one.

[25]  Adam B. Olshen,et al.  Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis , 2009, Bioinform..

[26]  E. Goode,et al.  Prognostic and therapeutic relevance of molecular subtypes in high-grade serous ovarian cancer. , 2014, Journal of the National Cancer Institute.

[27]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[28]  Feng Gao,et al.  Dissecting cancer heterogeneity based on dimension reduction of transcriptomic profiles using extreme learning machines , 2018, PloS one.

[29]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[30]  T. Curran,et al.  Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[31]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[32]  Huadong Liu CLUSTERING: HIERARCHICAL ALGORITHMS , 2006 .

[33]  Laurent Ozbun,et al.  A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. , 2008, Cancer research.

[34]  Agnes Vathy-Fogarassy,et al.  Graph-Based Clustering Algorithms , 2013 .

[35]  Charu C. Aggarwal,et al.  Data Clustering , 2013 .

[36]  Samuel Kaski,et al.  Dimensionality reduction by random mapping: fast similarity computation for clustering , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[37]  A. Jemal,et al.  Global Cancer Statistics , 2011 .

[38]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.

[39]  Florian Markowetz,et al.  Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions , 2013, Nature Medicine.