An Improved Ant-Based Algorithm for the Degree-Constrained Minimum Spanning Tree Problem

The degree-constrained minimum spanning tree (DCMST) problem is the problem of finding the minimum cost spanning tree in an edge weighted complete graph such that each vertex in the spanning tree has degree ≤ d for some d ≥ 2. The DCMST problem is known to be NP-hard. This paper presents an ant-based algorithm to find low cost degree-constrained spanning trees (DCST). The algorithm employs a set of ants which traverse the graph and identify a set of candidate edges, from which a DCST is constructed. Local optimization algorithms are then used to further improve the DCST. Extensive experiments using 612 problem instances show many improvements over existing algorithms.

[1]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[2]  Thomas Stützle,et al.  MAX-MIN Ant System , 2000, Future Gener. Comput. Syst..

[3]  Subhash C. Narula,et al.  Degree-constrained minimum spanning tree , 1980, Comput. Oper. Res..

[4]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[5]  Minh N. Doan,et al.  An effective ant-based algorithm for the degree-constrained minimum spanning tree problem , 2007, 2007 IEEE Congress on Evolutionary Computation.

[6]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[7]  Martin W. P. Savelsbergh,et al.  Edge exchanges in the degree-constrained minimum spanning tree problem , 1985, Comput. Oper. Res..

[8]  Marimuthu Palaniswami,et al.  Comparison of Heuristic Algorithms for the Degree Constrained Minimum Spanning Tree , 1996 .

[9]  Hong Tat Ewe,et al.  An Ant Colony Optimization Approach to the Degree-Constrained Minimum Spanning Tree Problem , 2005, CIS.

[10]  M. Gen,et al.  A note on genetic algorithms for degree‐constrained spanning tree problems , 1997 .

[11]  David W. Corne,et al.  A new evolutionary approach to the degree-constrained minimum spanning tree problem , 1999, IEEE Trans. Evol. Comput..

[12]  Byung Ro Moon,et al.  Genetic Algorithm and Graph Partitioning , 1996, IEEE Trans. Computers.

[13]  G. Di Caro,et al.  Ant colony optimization: a new meta-heuristic , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[14]  ThanhVu Nguyen,et al.  Parallel shared memory strategies for ant-based optimization algorithms , 2009, GECCO '09.

[15]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[16]  David W. Corne,et al.  A Powerful New Encoding for Tree-Based Combinatorial Optimisation Problems , 2004, PPSN.

[17]  Huynh Thi Thanh Binh,et al.  New Particle Swarm Optimization Algorithm for Solving Degree Constrained Minimum Spanning Tree Problem , 2008, PRICAI.

[18]  Andreas T. Ernst,et al.  Comparison of Algorithms for the Degree Constrained Minimum Spanning Tree , 2001, J. Heuristics.

[19]  Andreas T. Ernst A hybrid Lagrangian Particle Swarm Optimization Algorithm for the degree-constrained minimum spanning tree problem , 2010, IEEE Congress on Evolutionary Computation.

[20]  Bryant A. Julstrom,et al.  Edge sets: an effective evolutionary coding of spanning trees , 2003, IEEE Trans. Evol. Comput..

[21]  P. J. Green,et al.  Probability and Statistical Inference , 1978 .

[22]  Narsingh Deo,et al.  Minimum-Weight Degree-Constrained Spanning Tree Problem: Heuristics and Implementation on an SIMD Parallel Machine , 1996, Parallel Comput..

[23]  R. Ravi,et al.  Many birds with one stone: multi-objective approximation algorithms , 1993, STOC '93.

[24]  A. Volgenant A Lagrangean approach to the degree-constrained minimum spanning tree problem , 1989 .

[25]  Thang Nguyen Bui,et al.  An ant-based algorithm for finding degree-constrained minimum spanning tree , 2006, GECCO.

[26]  M. Dorigo,et al.  The Ant Colony Optimization MetaHeuristic 1 , 1999 .

[27]  G. Raidl An efficient evolutionary algorithm for the degree-constrained minimum spanning tree problem , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[28]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Node-Depth Encoding for Evolutionary Algorithms Applied to Network Design , 2004, GECCO.

[29]  Bryant A. Julstrom,et al.  A weighted coding in a genetic algorithm for the degree-constrained minimum spanning tree problem , 2000, SAC '00.

[30]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[31]  David W. Corne,et al.  The edge-window-decoder representation for tree-based problems , 2006, IEEE Transactions on Evolutionary Computation.