Monoidal computer II: Normal complexity by string diagrams

In Monoidal Computer I, we introduced a categorical model of computation where the formal reasoning about computability was supported by the simple and popular diagrammatic language of string diagrams. In the present paper, we refine and extend that model of computation to support a formal complexity theory as well. This formalization brings to the foreground the concept of normal complexity measures, which allow decompositions akin to Kleene’s normal form. Such measures turn out to be just those where evaluating the complexity of a program does not require substantially more resources than evaluating the program itself. The usual time and space complexity are thus normal measures, whereas the average and the randomized complexity measures are not. While the measures that are not normal provide important design time information about algorithms, and for theoretical analyses, normal measures can also be used at run time, as practical tools of computation, e.g. to set the bounds for hypothesis testing, inductive inference and algorithmic learning.

[1]  Lars Birkedal A general notion of realizability , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[2]  J. Hyland The Effective Topos , 1982 .

[3]  Lars Birkedal A general notion of realizability , 2002, Bull. Symb. Log..

[4]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[5]  Leonid A. Levin Computational Complexity of Functions , 1996, Theor. Comput. Sci..

[6]  R. Penrose STRUCTURE OF SPACE--TIME. , 1968 .

[7]  Simon Thompson,et al.  Haskell: The Craft of Functional Programming , 1996 .

[8]  Samson Abramsky,et al.  Specifying Interaction Categories , 1997, Category Theory and Computer Science.

[9]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[10]  Dana S. Scott,et al.  Some Domain Theory and Denotational Semantics in Coq , 2009, TPHOLs.

[11]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[12]  E. Riehl Basic concepts of enriched category theory , 2014 .

[13]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[14]  Dusko Pavlovic,et al.  Geometry of abstraction in quantum computation , 2010, Classical and Quantum Information Assurance Foundations and Practice.

[15]  Dusko Pavlovic,et al.  Relating Toy Models of Quantum Computation: Comprehension, Complementarity and Dagger Mix Autonomous Categories , 2010, QPL@MFPS.

[16]  Klaus Keimel,et al.  A compendium of continous lattices , 1980 .

[17]  J. Robin B. Cockett,et al.  Introduction to Turing categories , 2008, Ann. Pure Appl. Log..

[18]  Dusko Pavlovic,et al.  Quantum measurements without sums , 2007 .

[19]  Dusko Pavlovic Categorical logic of Names and Abstraction in Action Calculi , 1997, Math. Struct. Comput. Sci..

[20]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[21]  Manuel Blum,et al.  A Machine-Independent Theory of the Complexity of Recursive Functions , 1967, JACM.

[22]  A. Carboni,et al.  Cartesian bicategories I , 1987 .

[23]  S. Kleene General recursive functions of natural numbers , 1936 .

[24]  Patrick C. Fischer,et al.  Computational speed-up by effective operators , 1972, Journal of Symbolic Logic.

[25]  John Power,et al.  Category theory for operational semantics , 2004, Theor. Comput. Sci..

[26]  Alex Heller,et al.  Dominical categories: recursion theory without elements , 1987, Journal of Symbolic Logic.

[27]  Dusko Pavlovic,et al.  Monoidal computer I: Basic computability by string diagrams , 2012, Inf. Comput..

[28]  Pieter J. W. Hofstra,et al.  Combinatorial realizability models of type theory , 2013, Ann. Pure Appl. Log..

[29]  Joseph E. Stoy,et al.  Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory , 1981 .

[30]  Miklós Bartha,et al.  The monoidal structure of Turing machines† , 2013, Mathematical Structures in Computer Science.

[31]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[32]  Du Sko Pavlovi,et al.  Categorical Logic of Names and Abstraction in Action Calculi , 1993 .

[33]  Samson Abramsky,et al.  Retracing some paths in Process Algebra , 1996, CONCUR.

[34]  B. Coecke,et al.  Classical and quantum structuralism , 2009, 0904.1997.

[35]  Dusko Pavlovic,et al.  Gaming security by obscurity , 2011, NSPW '11.

[36]  E. Mark Gold,et al.  Limiting recursion , 1965, Journal of Symbolic Logic.

[37]  Manuel Blum,et al.  On Effective Procedures for Speeding Up Algorithms , 1971, JACM.

[38]  F. William Lawvere,et al.  Adjointness in Foundations , 1969 .

[39]  Andrea Asperti,et al.  The intensional content of Rice's theorem , 2008, POPL '08.

[40]  Dusko Pavlovic,et al.  Quantum and Classical Structures in Nondeterminstic Computation , 2008, QI.