暂无分享,去创建一个
[1] Lars Birkedal. A general notion of realizability , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).
[2] J. Hyland. The Effective Topos , 1982 .
[3] Lars Birkedal. A general notion of realizability , 2002, Bull. Symb. Log..
[4] A. Joyal,et al. The geometry of tensor calculus, I , 1991 .
[5] Leonid A. Levin. Computational Complexity of Functions , 1996, Theor. Comput. Sci..
[6] R. Penrose. STRUCTURE OF SPACE--TIME. , 1968 .
[7] Simon Thompson,et al. Haskell: The Craft of Functional Programming , 1996 .
[8] Samson Abramsky,et al. Specifying Interaction Categories , 1997, Category Theory and Computer Science.
[9] Jr. Hartley Rogers. Theory of Recursive Functions and Effective Computability , 1969 .
[10] Dana S. Scott,et al. Some Domain Theory and Denotational Semantics in Coq , 2009, TPHOLs.
[11] Umesh V. Vazirani,et al. Quantum Complexity Theory , 1997, SIAM J. Comput..
[12] E. Riehl. Basic concepts of enriched category theory , 2014 .
[13] Marcel Paul Schützenberger,et al. On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..
[14] Dusko Pavlovic,et al. Geometry of abstraction in quantum computation , 2010, Classical and Quantum Information Assurance Foundations and Practice.
[15] Dusko Pavlovic,et al. Relating Toy Models of Quantum Computation: Comprehension, Complementarity and Dagger Mix Autonomous Categories , 2010, QPL@MFPS.
[16] Klaus Keimel,et al. A compendium of continous lattices , 1980 .
[17] J. Robin B. Cockett,et al. Introduction to Turing categories , 2008, Ann. Pure Appl. Log..
[18] Dusko Pavlovic,et al. Quantum measurements without sums , 2007 .
[19] Dusko Pavlovic. Categorical logic of Names and Abstraction in Action Calculi , 1997, Math. Struct. Comput. Sci..
[20] J. Lambek,et al. Introduction to higher order categorical logic , 1986 .
[21] Manuel Blum,et al. A Machine-Independent Theory of the Complexity of Recursive Functions , 1967, JACM.
[22] A. Carboni,et al. Cartesian bicategories I , 1987 .
[23] S. Kleene. General recursive functions of natural numbers , 1936 .
[24] Patrick C. Fischer,et al. Computational speed-up by effective operators , 1972, Journal of Symbolic Logic.
[25] John Power,et al. Category theory for operational semantics , 2004, Theor. Comput. Sci..
[26] Alex Heller,et al. Dominical categories: recursion theory without elements , 1987, Journal of Symbolic Logic.
[27] Dusko Pavlovic,et al. Monoidal computer I: Basic computability by string diagrams , 2012, Inf. Comput..
[28] Pieter J. W. Hofstra,et al. Combinatorial realizability models of type theory , 2013, Ann. Pure Appl. Log..
[29] Joseph E. Stoy,et al. Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory , 1981 .
[30] Miklós Bartha,et al. The monoidal structure of Turing machines† , 2013, Mathematical Structures in Computer Science.
[31] P. Selinger. A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.
[32] Du Sko Pavlovi,et al. Categorical Logic of Names and Abstraction in Action Calculi , 1993 .
[33] Samson Abramsky,et al. Retracing some paths in Process Algebra , 1996, CONCUR.
[34] B. Coecke,et al. Classical and quantum structuralism , 2009, 0904.1997.
[35] Dusko Pavlovic,et al. Gaming security by obscurity , 2011, NSPW '11.
[36] E. Mark Gold,et al. Limiting recursion , 1965, Journal of Symbolic Logic.
[37] Manuel Blum,et al. On Effective Procedures for Speeding Up Algorithms , 1971, JACM.
[38] F. William Lawvere,et al. Adjointness in Foundations , 1969 .
[39] Andrea Asperti,et al. The intensional content of Rice's theorem , 2008, POPL '08.
[40] Dusko Pavlovic,et al. Quantum and Classical Structures in Nondeterminstic Computation , 2008, QI.