Gaussian Process Encoders: VAEs with Reliable Latent-Space Uncertainty

Variational autoencoders are a versatile class of deep latent variable models. They learn expressive latent representations of high dimensional data. However, the latent variance is not a reliable estimate of how uncertain the model is about a given input point. We address this issue by introducing a sparse Gaussian process encoder. The Gaussian process leads to more reliable uncertainty estimates in the latent space. We investigate the implications of replacing the neural network encoder with a Gaussian process in light of recent research. We then demonstrate how the Gaussian Process encoder generates reliable uncertainty estimates while maintaining good likelihood estimates on a range of anomaly detection problems. Finally, we investigate the sensitivity to noise in the training data and show how an appropriate choice of Gaussian process kernel can lead to automatic relevance determination.

[1]  Diederik P. Kingma,et al.  An Introduction to Variational Autoencoders , 2019, Found. Trends Mach. Learn..

[2]  Anton van den Hengel,et al.  Deep Anomaly Detection with Deviation Networks , 2019, KDD.

[3]  Bernhard Schölkopf,et al.  Learning Disentangled Representations with Wasserstein Auto-Encoders , 2018, ICLR.

[4]  Jasper Snoek,et al.  Likelihood Ratios for Out-of-Distribution Detection , 2019, NeurIPS.

[5]  Thomas G. Dietterich,et al.  Deep Anomaly Detection with Outlier Exposure , 2018, ICLR.

[6]  David Duvenaud,et al.  Automatic model construction with Gaussian processes , 2014 .

[7]  Christopher K. I. Williams,et al.  The shape variational autoencoder: A deep generative model of part‐segmented 3D objects , 2017, Comput. Graph. Forum.

[8]  Roland Vollgraf,et al.  Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms , 2017, ArXiv.

[9]  Hedvig Kjellström,et al.  Advances in Variational Inference , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Yee Whye Teh,et al.  Do Deep Generative Models Know What They Don't Know? , 2018, ICLR.

[11]  7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 , 2019 .

[12]  Neil D. Lawrence,et al.  Variational Auto-encoded Deep Gaussian Processes , 2015, ICLR.

[13]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[14]  Luca Saglietti,et al.  Gaussian Process Prior Variational Autoencoders , 2018, NeurIPS.

[15]  Jacob R. Gardner,et al.  Parametric Gaussian Process Regressors , 2020, ICML.

[16]  Ryan P. Adams,et al.  Composing graphical models with neural networks for structured representations and fast inference , 2016, NIPS.

[17]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[18]  Nicki Skafte Detlefsen,et al.  Reliable training and estimation of variance networks , 2019, NeurIPS.

[19]  Dustin Tran,et al.  Variational Gaussian Process , 2015, ICLR.

[20]  Carl E. Rasmussen,et al.  Convolutional Gaussian Processes , 2017, NIPS.

[21]  Gunnar Rätsch,et al.  Multivariate Time Series Imputation with Variational Autoencoders , 2019, ArXiv.

[22]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[23]  Stefano Ermon,et al.  InfoVAE: Balancing Learning and Inference in Variational Autoencoders , 2019, AAAI.

[24]  Stephan Mandt,et al.  Scalable Gaussian Process Variational Autoencoders , 2020, AISTATS.

[25]  Zoubin Ghahramani,et al.  Local and global sparse Gaussian process approximations , 2007, AISTATS.

[26]  Graham Neubig,et al.  Lagging Inference Networks and Posterior Collapse in Variational Autoencoders , 2019, ICLR.

[27]  Jürgen Schmidhuber,et al.  Recurrent World Models Facilitate Policy Evolution , 2018, NeurIPS.

[28]  Max Welling,et al.  VAE with a VampPrior , 2017, AISTATS.

[29]  David P. Wipf,et al.  Diagnosing and Enhancing VAE Models , 2019, ICLR.

[30]  W. Bastiaan Kleijn,et al.  Bounded Information Rate Variational Autoencoders , 2018, ArXiv.