Computing multihomogeneous resultants using straight-line programs
暂无分享,去创建一个
[1] J. E. Morais,et al. Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.
[2] G. B. M. Zerr,et al. Algebra: 117-118 , 1900 .
[3] Marc Giusti,et al. Lower bounds for diophantine approximations , 1997 .
[4] Neal H. McCoy. On the resultant of a system of forms homogeneous in each of several sets of variables , 1933 .
[5] Joachim von zur Gathen,et al. Parallel Arithmetic Computations: A Survey , 1986, MFCS.
[6] Bernd Sturmfels,et al. Product formulas for resultants and Chow forms , 1993 .
[7] B. M. Fulk. MATH , 1992 .
[8] I. Shafarevich. Basic algebraic geometry , 1974 .
[9] J. Sylvester,et al. XVIII. On a theory of the syzygetic relations of two rational integral functions, comprising an application to the theory of Sturm’s functions, and that of the greatest algebraical common measure , 1853, Philosophical Transactions of the Royal Society of London.
[10] K. Ramachandra,et al. Vermeidung von Divisionen. , 1973 .
[11] B. Sturmfels,et al. Multigraded Resultants of Sylvester Type , 1994 .
[12] Manfred Minimair. Sparse Resultant under Vanishing Coefficients , 2003 .
[13] J. E. Morais,et al. Lower Bounds for diophantine Approximation , 1996 .
[14] Ioannis Z. Emiris. Toric resultants and applications to geometric modelling , 2005 .
[15] Bernard Mourrain,et al. Matrices in Elimination Theory , 1999, J. Symb. Comput..
[16] D. N. Bernshtein. The number of roots of a system of equations , 1975 .
[17] Joos Heintz,et al. Deformation Techniques for Efficient Polynomial Equation Solving , 2000, J. Complex..
[18] J. Jouanolou,et al. Le formalisme du résultant , 1991 .
[19] John F. Canny,et al. An Efficient Algorithm for the Sparse Mixed Resultant , 1993, AAECC.
[20] Charles W. Wampler,et al. A product-decomposition bound for Bezout numbers , 1995 .
[21] Bernd Sturmfels,et al. On the Newton Polytope of the Resultant , 1994 .
[22] C. D'Andrea. Macaulay style formulas for sparse resultants , 2001 .
[23] I. M. Gelʹfand,et al. Discriminants, Resultants, and Multidimensional Determinants , 1994 .
[24] Joos Heintz,et al. Testing polynomials which are easy to compute (Extended Abstract) , 1980, STOC '80.
[25] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[26] Teresa Krick,et al. The Computational Complexity of the Chow Form , 2002, Found. Comput. Math..
[27] D. Pedoe,et al. Methods of Algebraic Geometry, II , 1948 .
[28] Alicia Dickenstein,et al. Solving Polynomial Equations , 2005 .
[29] Andrew McLennan,et al. The maximum number of real roots of a multihomogeneous system of polynomial equations. , 1999 .
[30] John F. Canny,et al. A subdivision-based algorithm for the sparse resultant , 2000, JACM.
[31] Alicia Dickenstein,et al. Multihomogeneous resultant formulae by means of complexes , 2003, J. Symb. Comput..
[32] F. S. Macaulay. Some Formulæ in Elimination , 1902 .
[33] C. D'Andrea,et al. Explicit formulas for the multivariate resultant , 2000, math/0007036.
[34] Arthur Cayley,et al. The Collected Mathematical Papers: On the Theory of Elimination , 2009 .
[35] David A. Cox,et al. Using Algebraic Geometry , 1998 .
[36] bitnetJoos Heintz,et al. La D Etermination Des Points Isol Es Et De La Dimension D'une Vari Et E Alg Ebrique Peut Se Faire En Temps Polynomial , 1991 .
[37] Joos Heintz,et al. Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..