Modified Grover operator for amplitude estimation

In this paper, we propose a quantum amplitude estimation method that uses a modified Grover operator and quadratically improves the estimation accuracy in the ideal case, as in the conventional one using the standard Grover operator. Under the depolarizing noise, the proposed method can outperform the conventional one in the sense that it can in principle achieve the ultimate estimation accuracy characterized by the quantum Fisher information in the limit of a large number of qubits, while the conventional one cannot achieve the same value of ultimate accuracy. In general this superiority requires a sophisticated adaptive measurement, but we numerically demonstrate that the proposed method can outperform the conventional one and approach to the ultimate accuracy, even with a simple non-adaptive measurement strategy.

[1]  Ashish Kapoor,et al.  Quantum deep learning , 2014, Quantum Inf. Comput..

[2]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[3]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[4]  Xing Xiao,et al.  Multiple phase estimation for arbitrary pure states under white noise , 2014, 1409.2200.

[5]  Eric G. Brown,et al.  Quantum Amplitude Estimation in the Presence of Noise , 2020, 2006.14145.

[6]  Zhang Jiang,et al.  Quantum Fisher information for states in exponential form , 2013, 1310.2687.

[7]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[8]  Vadim N. Smelyanskiy,et al.  Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state , 2010, 1006.1645.

[9]  Stefan Woerner,et al.  Quantum risk analysis , 2018, npj Quantum Information.

[10]  Yue Sun,et al.  Option Pricing using Quantum Computers , 2019, Quantum.

[11]  Anupam Prakash,et al.  Quantum algorithms for linear algebra and machine learning , 2014 .

[12]  Ashish Kapoor,et al.  Quantum Perceptron Models , 2016, NIPS.

[13]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[14]  Shouvanik Chakrabarti,et al.  Sublinear quantum algorithms for training linear and kernel-based classifiers , 2019, ICML.

[15]  A. Montanaro Quantum speedup of Monte Carlo methods , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[17]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[18]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[19]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[20]  Enrique Solano,et al.  Towards Pricing Financial Derivatives with an IBM Quantum Computer. , 2019, 1904.05803.

[21]  Yudong Cao,et al.  Bayesian Inference with Engineered Likelihood Functions for Robust Amplitude Estimation , 2020 .

[22]  Kouhei Nakaji Faster amplitude estimation , 2020, Quantum Inf. Comput..

[23]  Carl W. Helstrom,et al.  The minimum variance of estimates in quantum signal detection , 1968, IEEE Trans. Inf. Theory.

[24]  Koichi Miyamoto,et al.  Reduction of qubits in a quantum algorithm for Monte Carlo simulation by a pseudo-random-number generator , 2019 .

[25]  Ashish Kapoor,et al.  Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning , 2014, Quantum Inf. Comput..

[26]  S. F. Huelga,et al.  Precision Limits in Quantum Metrology with Open Quantum Systems , 2016, 1807.11882.

[27]  Akio Fujiwara,et al.  Quantum channel identification problem , 2001 .

[28]  Ryan O'Donnell,et al.  Quantum Approximate Counting with Nonadaptive Grover Iterations , 2020, STACS.

[29]  Jan Kolodynski,et al.  Phase estimation without a priori phase knowledge in the presence of loss , 2010, 1006.0734.

[30]  Hiroshi Nagaoka On Fisher Information of Quantum Statistical Models , 2005 .

[31]  Rory A. Fisher,et al.  XXI.—On the Dominance Ratio , 1923 .

[32]  Naoki Yamamoto,et al.  Amplitude estimation without phase estimation , 2019, Quantum Information Processing.

[33]  M. Mitchell,et al.  Quantum-enhanced measurements without entanglement , 2017, Reviews of Modern Physics.

[34]  Thomas R. Bromley,et al.  Quantum computational finance: Monte Carlo pricing of financial derivatives , 2018, Physical Review A.

[35]  Stefan Woerner,et al.  Credit Risk Analysis Using Quantum Computers , 2019, IEEE Transactions on Computers.

[36]  Naoki Yamamoto,et al.  Amplitude estimation via maximum likelihood on noisy quantum computer , 2020, Quantum Information Processing.

[37]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[38]  G. Tóth,et al.  Quantum metrology from a quantum information science perspective , 2014, 1405.4878.

[39]  Kazuyuki Aihara,et al.  Quantum Expectation-Maximization Algorithm , 2019, Physical Review A.

[40]  Stefan Woerner,et al.  Iterative quantum amplitude estimation , 2019, 1912.05559.

[41]  Iordanis Kerenidis,et al.  q-means: A quantum algorithm for unsupervised machine learning , 2018, NeurIPS.

[42]  Scott Aaronson,et al.  Quantum Approximate Counting, Simplified , 2019, SOSA.

[43]  Jan Kolodynski,et al.  Precision bounds in noisy quantum metrology , 2014, 1409.0535.