Modified Grover operator for amplitude estimation
暂无分享,去创建一个
Naoki Yamamoto | Tomoki Tanaka | Tamiya Onodera | Rudy Raymond | Shumpei Uno | Yohichi Suzuki | Keigo Hisanaga
[1] Ashish Kapoor,et al. Quantum deep learning , 2014, Quantum Inf. Comput..
[2] G. Brassard,et al. Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.
[3] Lov K. Grover. A fast quantum mechanical algorithm for database search , 1996, STOC '96.
[4] Xing Xiao,et al. Multiple phase estimation for arbitrary pure states under white noise , 2014, 1409.2200.
[5] Eric G. Brown,et al. Quantum Amplitude Estimation in the Presence of Noise , 2020, 2006.14145.
[6] Zhang Jiang,et al. Quantum Fisher information for states in exponential form , 2013, 1310.2687.
[7] M. Paris. Quantum estimation for quantum technology , 2008, 0804.2981.
[8] Vadim N. Smelyanskiy,et al. Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state , 2010, 1006.1645.
[9] Stefan Woerner,et al. Quantum risk analysis , 2018, npj Quantum Information.
[10] Yue Sun,et al. Option Pricing using Quantum Computers , 2019, Quantum.
[11] Anupam Prakash,et al. Quantum algorithms for linear algebra and machine learning , 2014 .
[12] Ashish Kapoor,et al. Quantum Perceptron Models , 2016, NIPS.
[13] S. Lloyd,et al. Advances in quantum metrology , 2011, 1102.2318.
[14] Shouvanik Chakrabarti,et al. Sublinear quantum algorithms for training linear and kernel-based classifiers , 2019, ICML.
[15] A. Montanaro. Quantum speedup of Monte Carlo methods , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[16] L. Davidovich,et al. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.
[17] S. Lloyd,et al. Quantum metrology. , 2005, Physical review letters.
[18] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[19] L. Ballentine,et al. Probabilistic and Statistical Aspects of Quantum Theory , 1982 .
[20] Enrique Solano,et al. Towards Pricing Financial Derivatives with an IBM Quantum Computer. , 2019, 1904.05803.
[21] Yudong Cao,et al. Bayesian Inference with Engineered Likelihood Functions for Robust Amplitude Estimation , 2020 .
[22] Kouhei Nakaji. Faster amplitude estimation , 2020, Quantum Inf. Comput..
[23] Carl W. Helstrom,et al. The minimum variance of estimates in quantum signal detection , 1968, IEEE Trans. Inf. Theory.
[24] Koichi Miyamoto,et al. Reduction of qubits in a quantum algorithm for Monte Carlo simulation by a pseudo-random-number generator , 2019 .
[25] Ashish Kapoor,et al. Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning , 2014, Quantum Inf. Comput..
[26] S. F. Huelga,et al. Precision Limits in Quantum Metrology with Open Quantum Systems , 2016, 1807.11882.
[27] Akio Fujiwara,et al. Quantum channel identification problem , 2001 .
[28] Ryan O'Donnell,et al. Quantum Approximate Counting with Nonadaptive Grover Iterations , 2020, STACS.
[29] Jan Kolodynski,et al. Phase estimation without a priori phase knowledge in the presence of loss , 2010, 1006.0734.
[30] Hiroshi Nagaoka. On Fisher Information of Quantum Statistical Models , 2005 .
[31] Rory A. Fisher,et al. XXI.—On the Dominance Ratio , 1923 .
[32] Naoki Yamamoto,et al. Amplitude estimation without phase estimation , 2019, Quantum Information Processing.
[33] M. Mitchell,et al. Quantum-enhanced measurements without entanglement , 2017, Reviews of Modern Physics.
[34] Thomas R. Bromley,et al. Quantum computational finance: Monte Carlo pricing of financial derivatives , 2018, Physical Review A.
[35] Stefan Woerner,et al. Credit Risk Analysis Using Quantum Computers , 2019, IEEE Transactions on Computers.
[36] Naoki Yamamoto,et al. Amplitude estimation via maximum likelihood on noisy quantum computer , 2020, Quantum Information Processing.
[37] S. Lloyd,et al. Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.
[38] G. Tóth,et al. Quantum metrology from a quantum information science perspective , 2014, 1405.4878.
[39] Kazuyuki Aihara,et al. Quantum Expectation-Maximization Algorithm , 2019, Physical Review A.
[40] Stefan Woerner,et al. Iterative quantum amplitude estimation , 2019, 1912.05559.
[41] Iordanis Kerenidis,et al. q-means: A quantum algorithm for unsupervised machine learning , 2018, NeurIPS.
[42] Scott Aaronson,et al. Quantum Approximate Counting, Simplified , 2019, SOSA.
[43] Jan Kolodynski,et al. Precision bounds in noisy quantum metrology , 2014, 1409.0535.