Discrete shallow water equations preserving symmetries and conservation laws

The one-dimensional shallow water equations in Eulerian coordinates are considered. Relations between symmetries and conservation laws for the potential form of the equations and symmetries and conservation laws in Eulerian coordinates are shown. An invariant difference scheme for equations in Eulerian coordinates with arbitrary bottom topography is constructed. It possesses all the finite-difference analogs of the conservation laws. Some bottom topographies require moving meshes in Eulerian coordinates, which are stationary meshes in mass Lagrangian coordinates. The developed invariant conservative difference schemes are verified numerically using examples of flow with various bottom topographies.

[1]  G. Gaeta Nonlinear symmetries and nonlinear equations , 1994 .

[2]  A. Paliathanasis Lie Symmetries and Similarity Solutions for Rotating Shallow Water , 2019, Zeitschrift für Naturforschung A.

[3]  P. Clarkson,et al.  Symmetry group analysis of the shallow water and semi-geostrophic equations , 2005 .

[4]  N. Ibragimov Transformation groups applied to mathematical physics , 1984 .

[5]  V. Dorodnitsyn,et al.  Discretization of second-order ordinary differential equations with symmetries , 2013 .

[6]  Roberto Floreanini,et al.  Lie symmetries of finite‐difference equations , 1995 .

[7]  Roman O. Popovych,et al.  Invariant Discretization Schemes for the Shallow-Water Equations , 2012, SIAM J. Sci. Comput..

[8]  C. Rogers,et al.  Group theoretical analysis of a rotating shallow liquid in a rigid container , 1989 .

[9]  S. MacLachlan,et al.  Well-balanced mesh-based and meshless schemes for the shallow-water equations , 2017, 1702.07749.

[10]  G. Warnecke,et al.  EXACT RIEMANN SOLUTIONS TO COMPRESSIBLE EULER EQUATIONS IN DUCTS WITH DISCONTINUOUS CROSS-SECTION , 2012 .

[11]  Continuous symmetries of Lagrangians and exact solutions of discrete equations , 2003, nlin/0307042.

[12]  A. Aksenov,et al.  Conservation laws of the equation of one-dimensional shallow water over uneven bottom in Lagrange’s variables , 2020 .

[13]  S. Lie Theorie der Transformationsgruppen I , 1880 .

[14]  R. Kozlov Conservative discretizations of the Kepler motion , 2007 .

[15]  Y. Chirkunov,et al.  Symmetry Properties and Solutions of Shallow Water Equations , 2014 .

[16]  S. Meleshko,et al.  Analysis of the one-dimensional Euler–Lagrange equation of continuum mechanics with a Lagrangian of a special form , 2018, Applied Mathematical Modelling.

[17]  A. Cheviakov,et al.  Invariant conservation law-preserving discretizations of linear and nonlinear wave equations , 2020, Journal of Mathematical Physics.

[18]  Stephen C. Anco,et al.  Derivation of conservation laws from nonlocal symmetries of differential equations , 1996 .

[19]  Alexander Khoperskov,et al.  Numerical Model of Shallow Water: the Use of NVIDIA CUDA Graphics Processors , 2016, ArXiv.

[20]  V. Dorodnitsyn,et al.  Symmetries, Conservation Laws, Invariant Solutions and Difference Schemes of the One-dimensional Green-Naghdi Equations , 2020, Journal of Nonlinear Mathematical Physics.

[21]  Peter E. Hydon,et al.  Difference Equations by Differential Equation Methods , 2014 .

[22]  D. Dutykh,et al.  Dispersive shallow water wave modelling. Part IV: Numerical simulation on a globally spherical geometry , 2017, 1707.02552.

[23]  G. Vallis Atmospheric and Oceanic Fluid Dynamics , 2006 .

[24]  V. A. Dorodnitsyn,et al.  Shallow water equations in Lagrangian coordinates: Symmetries, conservation laws and its preservation in difference models , 2020, Commun. Nonlinear Sci. Numer. Simul..

[25]  V. Dorodnitsyn,et al.  Symmetries and Integrability of Difference Equations: Lagrangian and Hamiltonian Formalism for Discrete Equations: Symmetries and First Integrals , 2011 .

[26]  V. A. Dorodnitsyn Finite Difference Models Entirely Inheriting Continuous Symmetry Of Original Differential Equations , 1994 .

[27]  G. Bluman,et al.  Direct Construction of Conservation Laws from Field Equations , 1997 .

[28]  Sergey V. Meleshko,et al.  Complete group classification of the two-Dimensional shallow water equations with constant coriolis parameter in Lagrangian coordinates , 2020, Commun. Nonlinear Sci. Numer. Simul..

[29]  V. Dorodnitsyn,et al.  Invariance and first integrals of continuous and discrete Hamiltonian equations , 2009, 0906.1891.

[30]  P. Winternitz,et al.  First integrals of difference equations which do not possess a variational formulation , 2014 .

[31]  G. Bluman,et al.  Applications of Symmetry Methods to Partial Differential Equations , 2009 .

[32]  A. Aksenov,et al.  Conservation laws and symmetries of the shallow water system above rough bottom , 2016 .

[33]  FINITE-DIFFERENCE ANALOG OF THE NOETHER THEOREM , 1993 .

[34]  V. Dorodnitsyn Transformation groups in net spaces , 1991 .

[35]  G. R. W. Quispel,et al.  Lie symmetries and the integration of difference equations , 1993 .

[36]  S. Meleshko,et al.  Symmetries of the hyperbolic shallow water equations and the Green–Naghdi model in Lagrangian coordinates , 2016 .

[37]  M. Kimura,et al.  Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition , 2019, Discrete & Continuous Dynamical Systems - S.

[38]  D. Levi,et al.  Continuous symmetries of difference equations , 2005, nlin/0502004.

[39]  Roman Kozlov,et al.  Conservative difference schemes for one-dimensional flows of polytropic gas , 2019, Commun. Nonlinear Sci. Numer. Simul..

[40]  Shigeru Maeda,et al.  The Similarity Method for Difference Equations , 1987 .

[41]  P. Winternitz,et al.  The adjoint equation method for constructing first integrals of difference equations , 2015 .

[42]  Sergey V. Meleshko,et al.  One-dimensional gas dynamics equations of a polytropic gas in Lagrangian coordinates: Symmetry classification, conservation laws, difference schemes , 2018, Commun. Nonlinear Sci. Numer. Simul..

[43]  Manuel Jesús Castro Díaz,et al.  Reliability of first order numerical schemes for solving shallow water system over abrupt topography , 2012, Appl. Math. Comput..

[44]  Roman Kozlov,et al.  Lie group classification of second-order ordinary difference equations , 2000 .

[45]  S. V. Meleshko,et al.  Group classification of the two-dimensional shallow water equations with the beta-plane approximation of coriolis parameter in Lagrangian coordinates , 2020, Commun. Nonlinear Sci. Numer. Simul..

[46]  A. Samarskii The Theory of Difference Schemes , 2001 .

[47]  Werner Bauer,et al.  Variational integrator for the rotating shallow‐water equations on the sphere , 2018, Quarterly Journal of the Royal Meteorological Society.

[48]  Alexander Bihlo,et al.  Symmetry analysis of a system of modified shallow-water equations , 2012, Commun. Nonlinear Sci. Numer. Simul..

[49]  Eleuterio F. Toro,et al.  Exact solution of the Riemann problem for the shallow water equations with discontinuous bottom geometry , 2008, J. Comput. Phys..