Exemplar VAE: Linking Generative Models, Nearest Neighbor Retrieval, and Data Augmentation

We introduce Exemplar VAEs, a family of generative models that bridge the gap between parametric and non-parametric, exemplar based generative models. Exemplar VAE is a variant of VAE with a non-parametric prior in the latent space based on a Parzen window estimator. To sample from it, one first draws a random exemplar from a training set, then stochastically transforms that exemplar into a latent code and a new observation. We propose retrieval augmented training (RAT) as a way to speed up Exemplar VAE training by using approximate nearest neighbor search in the latent space to define a lower bound on log marginal likelihood. To enhance generalization, model parameters are learned using exemplar leave-one-out and subsampling. Experiments demonstrate the effectiveness of Exemplar VAEs on density estimation and representation learning. Importantly, generative data augmentation using Exemplar VAEs on permutation invariant MNIST and Fashion MNIST reduces classification error from 1.17% to 0.69% and from 8.56% to 8.16%.

[1]  Michael I. Jordan,et al.  Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.

[2]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[3]  Heiga Zen,et al.  WaveNet: A Generative Model for Raw Audio , 2016, SSW.

[4]  Alexander A. Alemi,et al.  Deep Variational Information Bottleneck , 2017, ICLR.

[5]  Alexei A. Efros,et al.  Texture synthesis by non-parametric sampling , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[6]  Taesup Kim,et al.  Fast AutoAugment , 2019, NeurIPS.

[7]  Andriy Mnih,et al.  Resampled Priors for Variational Autoencoders , 2018, AISTATS.

[8]  Hideki Nakayama,et al.  Faster AutoAugment: Learning Augmentation Strategies using Backpropagation , 2019, ECCV.

[9]  Max Welling,et al.  Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.

[10]  Pieter Abbeel,et al.  Variational Lossy Autoencoder , 2016, ICLR.

[11]  Shin Ishii,et al.  Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  William T. Freeman,et al.  Example-Based Super-Resolution , 2002, IEEE Computer Graphics and Applications.

[13]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[14]  Samy Bengio,et al.  Generating Sentences from a Continuous Space , 2015, CoNLL.

[15]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[16]  Suman V. Ravuri,et al.  Classification Accuracy Score for Conditional Generative Models , 2019, NeurIPS.

[17]  Roger B. Grosse,et al.  Isolating Sources of Disentanglement in Variational Autoencoders , 2018, NeurIPS.

[18]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[19]  Yann Dauphin,et al.  Language Modeling with Gated Convolutional Networks , 2016, ICML.

[20]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[21]  Bernt Schiele,et al.  Generative Adversarial Text to Image Synthesis , 2016, ICML.

[22]  Geoffrey E. Hinton,et al.  Regularizing Neural Networks by Penalizing Confident Output Distributions , 2017, ICLR.

[23]  Alex Graves,et al.  Associative Compression Networks for Representation Learning , 2018, ArXiv.

[24]  Ole Winther,et al.  Ladder Variational Autoencoders , 2016, NIPS.

[25]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[26]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[27]  Pascal Vincent,et al.  The Manifold Tangent Classifier , 2011, NIPS.

[28]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[29]  Adams Wei Yu,et al.  BLOCK-NORMALIZED GRADIENT METHOD: AN EMPIRICAL STUDY FOR TRAINING DEEP NEURAL NETWORK , 2018 .

[30]  Xi Chen,et al.  PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications , 2017, ICLR.

[31]  Patrick Pérez,et al.  Object removal by exemplar-based inpainting , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[32]  Yoshua Bengio,et al.  NICE: Non-linear Independent Components Estimation , 2014, ICLR.

[33]  Bernhard Schölkopf,et al.  From Variational to Deterministic Autoencoders , 2019, ICLR.

[34]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[35]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  George Tucker,et al.  Energy-Inspired Models: Learning with Sampler-Induced Distributions , 2019, NeurIPS.

[37]  Ruslan Salakhutdinov,et al.  Importance Weighted Autoencoders , 2015, ICLR.

[38]  David G. Lowe,et al.  Scalable Nearest Neighbor Algorithms for High Dimensional Data , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Yang Li,et al.  A Forest from the Trees: Generation through Neighborhoods , 2020, AAAI.

[40]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[41]  Max Welling,et al.  VAE with a VampPrior , 2017, AISTATS.

[42]  Yann LeCun,et al.  Regularization of Neural Networks using DropConnect , 2013, ICML.

[43]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[44]  Xiaogang Wang,et al.  Deep Learning Face Attributes in the Wild , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[45]  David Vázquez,et al.  PixelVAE: A Latent Variable Model for Natural Images , 2016, ICLR.

[46]  Percy Liang,et al.  Generating Sentences by Editing Prototypes , 2017, TACL.

[47]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[48]  David P. Wipf,et al.  Diagnosing and Enhancing VAE Models , 2019, ICLR.

[49]  Omer Levy,et al.  Generalization through Memorization: Nearest Neighbor Language Models , 2020, ICLR.

[50]  Mohammad Norouzi,et al.  Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse , 2019, NeurIPS.

[51]  Daan Wierstra,et al.  Towards Conceptual Compression , 2016, NIPS.

[52]  Li Fei-Fei,et al.  Perceptual Losses for Real-Time Style Transfer and Super-Resolution , 2016, ECCV.

[53]  Alexei A. Efros,et al.  Scene completion using millions of photographs , 2007, SIGGRAPH 2007.

[54]  Pieter Abbeel,et al.  PixelSNAIL: An Improved Autoregressive Generative Model , 2017, ICML.

[55]  Quoc V. Le,et al.  AutoAugment: Learning Augmentation Strategies From Data , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[56]  Jörg Bornschein,et al.  Variational Memory Addressing in Generative Models , 2017, NIPS.

[57]  Bo Zhang,et al.  Learning to Generate with Memory , 2016, ICML.

[58]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.