On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations

We construct a local Lax-Friedrichs type positivity-preserving flux for compressible Navier-Stokes equations, which can be easily extended to multiple dimensions for generic forms of equations of state, shear stress tensor and heat flux. With this positivity-preserving flux, any finite volume type schemes including discontinuous Galerkin (DG) schemes with strong stability preserving Runge-Kutta time discretizations satisfy a weak positivity property. With a simple and efficient positivity-preserving limiter, high order explicit Runge-Kutta DG schemes are rendered preserving the positivity of density and internal energy without losing local conservation or high order accuracy. Numerical tests suggest that the positivity-preserving flux and the positivity-preserving limiter do not induce excessive artificial viscosity, and the high order positivity-preserving DG schemes without other limiters can produce satisfying non-oscillatory solutions when the nonlinear diffusion in compressible Navier-Stokes equations is accurately resolved.

[1]  Mengping Zhang,et al.  AN ANALYSIS OF THREE DIFFERENT FORMULATIONS OF THE DISCONTINUOUS GALERKIN METHOD FOR DIFFUSION EQUATIONS , 2003 .

[2]  Xiangxiong Zhang,et al.  On maximum-principle-satisfying high order schemes for scalar conservation laws , 2010, J. Comput. Phys..

[3]  Chi-Wang Shu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[4]  Jun Zhu,et al.  Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes , 2013, J. Comput. Phys..

[5]  Pierre-Henri Maire,et al.  Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. Part II: The two-dimensional case , 2016, J. Comput. Phys..

[6]  Xiangxiong Zhang,et al.  Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms , 2011, J. Comput. Phys..

[7]  Hailiang Liu,et al.  An Entropy Satisfying Discontinuous Galerkin Method for Nonlinear Fokker–Planck Equations , 2016, J. Sci. Comput..

[8]  Ronald Fedkiw,et al.  Towards positivity preservation for monolithic two-way solid-fluid coupling , 2016, J. Comput. Phys..

[9]  Philippe Villedieu,et al.  High-Order Positivity-Preserving Kinetic Schemes for the Compressible Euler Equations , 1996 .

[10]  Mengping Zhang,et al.  Fourier Type Error Analysis of the Direct Discontinuous Galerkin Method and Its Variations for Diffusion Equations , 2012, J. Sci. Comput..

[11]  Haiyang Gao,et al.  A High-Order Unifying Discontinuous Formulation for the Navier-Stokes Equations on 3D Mixed Grids , 2011 .

[12]  Steven H. Frankel,et al.  Entropy Stable Spectral Collocation Schemes for the Navier-Stokes Equations: Discontinuous Interfaces , 2014, SIAM J. Sci. Comput..

[13]  IXu-Dong Liu,et al.  Nonoscillatory High Order Accurate Self-similar Maximum Principle Satisfying Shock Capturing Schemes I , 1996 .

[14]  Robert D. Moser,et al.  A DPG method for steady viscous compressible flow , 2014 .

[15]  Jue Yan,et al.  THE DIRECT DISCONTINUOUS GALERKIN (DDG) METHOD FOR DIFFUSION WITH INTERFACE CORRECTIONS , 2010 .

[16]  Zhi Jian Wang,et al.  A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids , 2009, J. Comput. Phys..

[17]  Solution of the Compressible Navier-Stokes Equations for a Double Throat Nozzle , 1987 .

[18]  Hailiang Liu,et al.  Maximum-Principle-Satisfying Third Order Discontinuous Galerkin Schemes for Fokker-Planck Equations , 2014, SIAM J. Sci. Comput..

[19]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[20]  Xiangxiong Zhang,et al.  Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  J. Tinsley Oden,et al.  A discontinuous hp finite element method for the Euler and Navier–Stokes equations , 1999 .

[22]  B. Perthame Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions , 1992 .

[23]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[24]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[25]  Chi-Wang Shu,et al.  A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods , 2013, J. Comput. Phys..

[26]  Xiangxiong Zhang,et al.  A minimum entropy principle of high order schemes for gas dynamics equations , 2011, Numerische Mathematik.

[27]  Jean-Marc Moschetta,et al.  Regular Article: Positivity of Flux Vector Splitting Schemes , 1999 .

[28]  Zheng Chen,et al.  Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion equations on unstructured triangular meshes , 2015, J. Comput. Phys..

[29]  Bernardo Cockburn,et al.  A Hybridizable Discontinuous Galerkin Method for the Compressible Euler and Navier-Stokes Equations , 2010, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.

[30]  Derek M. Causon,et al.  On the Choice of Wavespeeds for the HLLC Riemann Solver , 1997, SIAM J. Sci. Comput..

[31]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[32]  G. Emanuel Bulk viscosity of a dilute polyatomic gas , 1990 .

[33]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[34]  Hailiang Liu,et al.  Optimal error estimates of the direct discontinuous Galerkin method for convection-diffusion equations , 2015, Math. Comput..

[35]  Zhengfu Xu,et al.  Parametrized Positivity Preserving Flux Limiters for the High Order Finite Difference WENO Scheme Solving Compressible Euler Equations , 2014, J. Sci. Comput..

[36]  Xiangxiong Zhang,et al.  Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes , 2011, Journal of Scientific Computing.

[37]  Cheng Wang,et al.  Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations , 2012, J. Comput. Phys..

[38]  David I. Ketcheson,et al.  Strong stability preserving runge-kutta and multistep time discretizations , 2011 .

[39]  Philip L. Roe,et al.  Robust Euler codes , 1997 .

[40]  Matthias Ihme,et al.  Entropy-bounded discontinuous Galerkin scheme for Euler equations , 2014, J. Comput. Phys..

[41]  Matteo Parsani,et al.  Entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations , 2014, J. Comput. Phys..

[42]  Nikolaus A. Adams,et al.  Positivity-preserving method for high-order conservative schemes solving compressible Euler equations , 2013, J. Comput. Phys..

[43]  Kun Xu,et al.  Positivity-Preserving Analysis of Explicit and Implicit Lax–Friedrichs Schemes for Compressible Euler Equations , 2000, J. Sci. Comput..

[44]  Xiangxiong Zhang,et al.  Positivity-preserving high order finite difference WENO schemes for compressible Euler equations , 2012, J. Comput. Phys..

[45]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..

[46]  Chi-Wang Shu,et al.  On positivity preserving finite volume schemes for Euler equations , 1996 .

[47]  A. U.S.,et al.  Implicit Large Eddy Simulation of Transitional Flows Over Airfoils and Wings , 2009 .

[48]  K. Xu,et al.  Gas-kinetic schemes for the compressible Euler equations: Positivity-preserving analysis , 1999 .

[49]  Bernardo Cockburn,et al.  An Embedded Discontinuous Galerkin Method for the Compressible Euler and Navier-Stokes Equations , 2011 .

[50]  Yifan Zhang,et al.  Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes , 2013, J. Comput. Phys..

[51]  Raphaèle Herbin,et al.  An unconditionally stable staggered pressure correction scheme for the compressible Navier-Stokes equations , 2016 .

[52]  S. Rebay,et al.  Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations , 2002 .

[53]  Anne Gelb,et al.  Numerical Simulation of High Mach Number Astrophysical Jets with Radiative Cooling , 2005, J. Sci. Comput..