Integrated Nanocavity Plasmon Light Sources for On-Chip Optical Interconnects

Next generation on-chip light sources require high modulation bandwidth, compact footprint, and efficient power consumption. Plasmon-based sources are able to address the footprint challenge set by both the diffraction limited of light and internal laser physics such as plasmon utilization. However, the high losses, large plasmonic-momentum of these sources hinder efficient light coupling to on-chip waveguides, thus, questioning their usefulness. Here we show that plasmon light sources can be useful devices; they can deliver efficient outcoupling power to on-chip waveguides and are able to surpass modulation speeds set by gain-compression. We find that waveguide-integrated plasmon nanocavity sources allow to transfer about ∼60% of their emission into planar on-chip waveguides, while sustaining a physical small footprint of ∼0.06 μm2. These sources are able to provide output powers of tens of microwatts for microamp-low injection currents and reach milliwatts for higher pump rates. Moreover, the direct mod...

[1]  Ming C. Wu,et al.  Lasing in subwavelength semiconductor nanopatches , 2010 .

[2]  A. N. Oraevsky,et al.  Nonlinear gain and carrier temperature dynamics in semiconductor laser media , 1998 .

[3]  J. Kwo,et al.  GaAs surface passivation using in-situ oxide deposition , 1996 .

[4]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[5]  C. Debaes,et al.  Energy-per-Bit Limits in Plasmonic Integrated Photodetectors , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  Y. Fainman,et al.  Temperature effects in metalclad semiconductor nanolasers , 2014 .

[7]  Sergey I. Bozhevolnyi,et al.  Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides , 2007 .

[8]  Xuezhe Zheng,et al.  A 33mW 100Gbps CMOS silicon photonic WDM transmitter using off-chip laser sources , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[9]  Ming C. Wu,et al.  Engineering of Metal-clad Optical Nanocavity to Optimize Coupling with Integrated Waveguides References and Links , 2022 .

[10]  Volker J. Sorger,et al.  Plasmon lasers: coherent light source at molecular scales , 2013 .

[11]  Mark L. Brongersma,et al.  Electrically-Driven Subwavelength Optical Nanocircuits , 2014 .

[12]  A. Mizrahi,et al.  Thresholdless nanoscale coaxial lasers , 2011, Nature.

[13]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[14]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[15]  S. Chuang,et al.  Metal-cavity nanolasers: How small can they go? , 2011, 17th Microopics Conference (MOC).

[16]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[17]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[18]  Xiang Zhang,et al.  Multiplexed and electrically modulated plasmon laser circuit. , 2012, Nano letters.

[19]  Shun Lien Chuang,et al.  Metal-Cavity Nanolasers , 2011, IEEE Photonics Journal.

[20]  Yeshaiahu Fainman,et al.  Room-temperature subwavelength metallo-dielectric lasers , 2010 .

[21]  Luca P. Carloni,et al.  Photonic Networks-on-Chip for Future Generations of Chip Multiprocessors , 2008, IEEE Transactions on Computers.

[22]  K. Vahala,et al.  Fiber-optic add-drop device based on a silica microsphere-whispering gallery mode system , 1999, IEEE Photonics Technology Letters.

[23]  M. Brongersma,et al.  An electrically-driven GaAs nanowire surface plasmon source. , 2012, Nano letters.

[24]  Cun-Zheng Ning,et al.  Metallic subwavelength-cavity semiconductor nanolasers , 2012, Light: Science & Applications.

[25]  K. Ding,et al.  Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers , 2013 .

[26]  Ming C. Wu,et al.  Subwavelength Metal-optic Semiconductor Nanopatch Lasers References and Links , 2022 .

[27]  D. Bimberg,et al.  Metal-cavity surface-emitting microlaser at room temperature , 2010 .

[28]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[29]  Chih-Hsiang Lin,et al.  Effect of GaAs/AlGaAs quantum-well structure on refractive index , 1994, IEEE Photonics Technology Letters.

[30]  Volker J. Sorger,et al.  Nano-optics gets practical. , 2015, Nature nanotechnology.

[31]  R. F. Oulton,et al.  Anomalous spectral scaling of light emission rates in low-dimensional metallic nanostructures , 2011 .

[32]  Fouad Karouta,et al.  Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. , 2009, Optics express.

[33]  Chinhua Wang,et al.  Nanoscale active hybrid plasmonic laser with a metal-clad metal–insulator–semiconductor square resonator , 2014 .

[34]  Stephan W Koch,et al.  Physics of Optoelectronic Devices , 1995 .

[35]  David A B Miller,et al.  Energy consumption in optical modulators for interconnects. , 2012, Optics express.

[36]  Y. Fainman,et al.  Wafer Bonded Subwavelength Metallo-Dielectric Laser , 2011, IEEE Photonics Journal.

[37]  R. Sobolewski,et al.  High-speed photoconductive switch based on low-temperature GaAs transferred on SiO/sub 2/-Si substrate , 2003, IEEE Photonics Technology Letters.

[38]  J. Bowers,et al.  Hybrid Silicon Photonics for Optical Interconnects , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[39]  Xiang Zhang,et al.  Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. , 2010, Nature materials.

[40]  Yeshaiahu Fainman,et al.  Subwavelength semiconductor lasers for dense chip-scale integration , 2014 .

[41]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[42]  Philippe Regreny,et al.  Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. , 2010, Nano letters.

[43]  Adachi Optical properties of AlxGa1-xAs alloys. , 1988, Physical review. B, Condensed matter.

[44]  Eyal Feigenbaum,et al.  Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides. , 2010, Nano letters.

[45]  Y. Fainman,et al.  Temperature effects in metal-clad semiconductor nanolasers , 2015 .

[46]  Shun Lien Chuang,et al.  Metal-Cavity Surface-Emitting Microlasers With Size Reduction: Theory and Experiment , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[47]  van Pj René Veldhoven,et al.  Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature. , 2012, Optics express.

[48]  Xiang Zhang,et al.  Spotlight on Plasmon Lasers , 2011, Science.

[49]  G. Roelkens,et al.  Hybrid III-V semiconductor/silicon nanolaser. , 2011, Optics express.