Study of peptide conformation in terms of the ABEEM/MM method

The ABEEM/MM model (atom‐bond electronegativity equalization method fused into molecular mechanics) is applied to study of the polypeptide conformations. The Lennard–Jones and torsional parameters were optimized to be consistent with the ABEEM/MM fluctuating charge electrostatic potential. The hydrogen bond was specially treated with an electrostatic fitting function. Molecular dipole moments, dimerization energies, and hydrogen bond lengths of complexes are reasonably achieved by our model, compared to ab initio results. The ABEEM/MM fluctuating charge model reproduces both the peptide conformational energies and structures with satisfactory accuracy with low computer cost. The transferability is tested by applying the parameters of our model to the tetrapeptide of alanine and another four dipeptides. The overall RMS deviations in conformational energies and key dihedral angles for four di‐ or tetrapeptide, is 0.39 kcal/mol and 7.7°. The current results agree well with those by the accurate ab initio method, and are comparable to those from the best existing force fields. The results make us believe that our fluctuating charge model can obtain more promising results in protein and macromolecular modeling with good accuracy but less computer cost. © 2005 Wiley Periodicals, Inc. J Comput Chem 27: 1–10, 2006

[1]  P. T. V. Duijnen,et al.  Molecular and Atomic Polarizabilities: Thole's Model Revisited , 1998 .

[2]  D. Zichi,et al.  Generalized molecular mechanics including quantum electronic structure variation of polar solvents. II. A molecular dynamics simulation study of water , 1998 .

[3]  Jenn-Huei Lii,et al.  The MM3 force field for amides, polypeptides and proteins , 1991 .

[4]  Peter Itskowitz,et al.  Chemical Potential Equalization Principle: Direct Approach from Density Functional Theory , 1997 .

[5]  Mauro C. C. Ribeiro,et al.  Fluctuating charge model for polyatomic ionic systems: A test case with diatomic anions , 1999 .

[6]  R. T. Sanderson Chemical Bonds and Bond Energy , 1976 .

[7]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[8]  Peter A. Kollman,et al.  THE EFFECTS OF BASIS SET AND BLOCKING GROUPS ON THE CONFORMATIONAL ENERGIES OF GLYCYL AND ALANYL DIPEPTIDES. A HARTREE-FOCK AND MP2 STUDY , 1997 .

[9]  Koji Ando,et al.  Fluctuating Charge Study of Polarization Effects in Chlorinated Organic Liquids , 2001 .

[10]  Dan N. Bernardo,et al.  An Anisotropic Polarizable Water Model: Incorporation of All-Atom Polarizabilities into Molecular Mechanics Force Fields , 1994 .

[11]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[12]  KOHN-SHAM DESCRIPTION OF EQUILIBRIA AND CHARGE TRANSFER IN REACTIVE SYSTEMS , 1998 .

[13]  P. Procacci,et al.  A transferable polarizable electrostatic force field for molecular mechanics based on the chemical potential equalization principle , 2002 .

[14]  Chang-Sheng Wang,et al.  Atom−Bond Electronegativity Equalization Method. 1. Calculation of the Charge Distribution in Large Molecules , 1997 .

[15]  T. Keyes Normal mode theory of two step relaxation in liquids: Polarizability dynamics in CS2 , 1996 .

[16]  Zhong-Zhi Yang,et al.  Atom–bond electronegativity equalization method. II. Lone-pair electron model , 1999 .

[17]  Molecular mechanics with fluctuating atomic charges – a new force field with a semi-empirical charge calculation , 2001 .

[18]  Alexander D. MacKerell,et al.  An all-atom empirical energy function for the simulation of nucleic acids , 1995 .

[19]  Andrew E. Torda,et al.  The GROMOS biomolecular simulation program package , 1999 .

[20]  Xin Li,et al.  Hydration of Li+ -ion in atom-bond electronegativity equalization method-7P water: a molecular dynamics simulation study. , 2005, The Journal of chemical physics.

[21]  T. Halgren MMFF VI. MMFF94s option for energy minimization studies , 1999, J. Comput. Chem..

[22]  Harry A. Stern,et al.  Development of a polarizable force field for proteins via ab initio quantum chemistry: First generation model and gas phase tests , 2002, J. Comput. Chem..

[23]  E. Llanta,et al.  Collision-induced absorption in liquid carbon tetrachloride , 2001 .

[24]  Zhong-Zhi Yang,et al.  An investigation of alkane conformations based on the ABEEM/MM model , 2005 .

[25]  R. Schoonheydt,et al.  The EEM approach to chemical hardness in molecules and solids: Fundamentals and applications , 1993 .

[26]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[27]  Peter J. Winn,et al.  Towards improved force fields: III. Polarization through modified atomic charges , 1999, Journal of computational chemistry.

[28]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[29]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[30]  R. Schoonheydt,et al.  MAPPING BETWEEN ELECTRON POPULATION AND VIBRATIONAL NORMAL MODES WITHIN THE CHARGE SENSITIVITY ANALYSIS , 1995 .

[31]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[32]  Zhong-Zhi Yang,et al.  Atom-Bond Electronegativity Equalization Method Fused into Molecular Mechanics. II. A Seven-Site Fluctuating Charge and Flexible Body Water Potential Function for Liquid Water , 2004 .

[33]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[34]  Ruhong Zhou,et al.  Parametrizing a polarizable force field from ab initio data. I. The fluctuating point charge model , 1999 .

[35]  Roman F. Nalewajski,et al.  Electrostatic effects in interactions between hard (soft) acids and bases , 1984 .

[36]  C. Reynolds,et al.  Toward Improved Force Fields. 1. Multipole-Derived Atomic Charges , 1997 .

[37]  P. Procacci,et al.  Calculation of optical spectra in liquid methanol using molecular dynamics and the chemical potential equalization method , 1999 .

[38]  Alexander D. MacKerell,et al.  A simple polarizable model of water based on classical Drude oscillators , 2003 .

[39]  Steven J. Stuart,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994 .

[40]  B. Berne,et al.  Combined fluctuating charge and polarizable dipole models: Application to a five-site water potential function , 2001 .

[41]  Richard A. Friesner,et al.  Accurate ab Initio Quantum Chemical Determination of the Relative Energetics of Peptide Conformations and Assessment of Empirical Force Fields , 1997 .

[42]  Chang-Sheng Wang,et al.  Calculation of molecular energies by atom-bond electronegativity equalization method , 1998 .

[43]  Ronald M. Levy,et al.  SOLVATION FREE ENERGIES OF SMALL AMIDES AND AMINES FROM MOLECULAR DYNAMICS/FREE ENERGY PERTURBATION SIMULATIONS USING PAIRWISE ADDITIVE AND MANY-BODY POLARIZABLE POTENTIALS , 1995 .

[44]  Bruce J. Berne,et al.  Dynamical Fluctuating Charge Force Fields: The Aqueous Solvation of Amides , 1996 .

[45]  Charles L. Brooks,et al.  CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations , 2004, J. Comput. Chem..

[46]  Harry A. Stern,et al.  Fluctuating Charge, Polarizable Dipole, and Combined Models: Parameterization from ab Initio Quantum Chemistry , 1999 .

[47]  Zhong-Zhi Yang,et al.  A characteristic molecular contour evaluated by a theoretical method , 1998 .

[48]  P. Geerlings,et al.  Conceptual density functional theory. , 2003, Chemical reviews.

[49]  Wilfried J. Mortier,et al.  Probing the reactivity of different sites within a molecule or solid by direct computation of molecular sensitivities via an extension of the electronegativity equalization method , 1991 .

[50]  R. Schoonheydt,et al.  The electronegativity equalization method (EEM) as a promising tool for the analysis of zeolite catalyzed reactions , 1997 .

[51]  Konstantin S. Smirnov,et al.  Consistent implementation of the electronegativity equalization method in molecular mechanics and molecular dynamics , 1996 .

[52]  R. Nalewajski A study of electronegativity equalization , 1985 .

[53]  Koji Ando,et al.  A stable fluctuating-charge polarizable model for molecular dynamics simulations: Application to aqueous electron transfers , 2001 .

[54]  Wilfried J. Mortier,et al.  Electronegativity-equalization method for the calculation of atomic charges in molecules , 1986 .

[55]  Alexander D. MacKerell,et al.  CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model , 2004, J. Comput. Chem..

[56]  R. T. Sanderson,et al.  An Interpretation of Bond Lengths and a Classification of Bonds. , 1951, Science.

[57]  M. Parrinello,et al.  Classical polarizable force fields parametrized from ab initio calculations , 2002 .

[58]  Peter A. Kollman,et al.  How transferable are hydrogen parameters in molecular mechanics calculations? , 1992 .

[59]  Zhong-Zhi Yang,et al.  Atom-bond electronegativity equalization method fused into molecular mechanics. I. A seven-site fluctuating charge and flexible body water potential function for water clusters. , 2004, The Journal of chemical physics.

[60]  Zhong-Zhi Yang,et al.  General atom-bond electronegativity equalization method and its application in prediction of charge distributions in polypeptide , 2000 .

[61]  Darrin M. York,et al.  A chemical potential equalization method for molecular simulations , 1996 .

[62]  L. Dang,et al.  The nonadditive intermolecular potential for water revised , 1992 .

[63]  R. Nalewajski On geometric concepts in sensitivity analysis of molecular charge distribution , 1992 .