Simulating the cloudy atmospheres of HD 209458 b and HD 189733 b with the 3D Met Office Unified Model

Aims. To understand and compare the 3D atmospheric structure of HD 209458 b and HD 189733 b, focusing on the formation and distribution of cloud particles, as well as their feedback on the dynamics and thermal profile. Methods. We coupled the 3D Met Office Unified Model (UM), including detailed treatments of atmospheric radiative transfer and dynamics, to a kinetic cloud formation scheme. The resulting model self-consistently solves for the formation of condensation seeds, surface growth and evaporation, gravitational settling and advection, cloud radiative feedback via absorption, and crucially, scattering. We used fluxes directly obtained from the UM to produce synthetic spectral energy distributions and phase curves. Results. Our simulations show extensive cloud formation in both HD 209458 b and HD 189733 b. However, cooler temperatures in the latter result in higher cloud particle number densities. Large particles, reaching 1 μm in diameter, can form due to high particle growth velocities, and sub-μm particles are suspended by vertical flows leading to extensive upper-atmosphere cloud cover. A combination of meridional advection and efficient cloud formation in cooler high latitude regions, results in enhanced cloud coverage for latitudes above 30° and leads to a zonally banded structure for all our simulations. The cloud bands extend around the entire planet, for HD 209458 b and HD 189733 b, as the temperatures, even on the day side, remain below the condensation temperature of silicates and oxides. Therefore, the simulated optical phase curve for HD 209458 b shows no “offset”, in contrast to observations. Efficient scattering of stellar irradiation by cloud particles results in a local maximum cooling of up to 250 K in the upper atmosphere, and an advection-driven fluctuating cloud opacity causes temporal variability in the thermal emission. The inclusion of this fundamental cloud-atmosphere radiative feedback leads to significant differences with approaches neglecting these physical elements, which have been employed to interpret observations and determine thermal profiles for these planets. This suggests that readers should be cautious of interpretations neglecting such cloud feedback and scattering, and that the subject merits further study.

[1]  A. Lacis,et al.  A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres , 1991 .

[2]  R. J. de Kok,et al.  Discovery of Water at High Spectral Resolution in the Atmosphere of 51 Peg b , 2017, 1701.07257.

[3]  Accuracy tests of radiation schemes used in hot Jupiter global circulation models , 2014, 1402.0814.

[4]  N. Wood,et al.  The unified model, a fully-compressible, non-hydrostatic, deep atmosphere global circulation model, applied to hot Jupiters - ENDGame for a HD 209458b test case , 2014 .

[5]  James Manners,et al.  Exploring the climate of Proxima B with the Met Office Unified Model (Corrigendum) , 2017, Astronomy & Astrophysics.

[6]  P. Deuflhard,et al.  One-step and extrapolation methods for differential-algebraic systems , 1987 .

[7]  Y. Miguel,et al.  Cloud formation in metal-rich atmospheres of hot super-Earths like 55 Cnc e and CoRoT7b , 2017 .

[8]  H. Looyenga Dielectric constants of heterogeneous mixtures , 1965 .

[9]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[10]  A. Showman,et al.  3D mixing in hot Jupiters atmospheres. I. Application to the day/night cold trap in HD 209458b , 2013, 1301.4522.

[11]  Malcolm Coe The rhythm of Barro Colorado , 1983, Nature.

[12]  U. Nowak,et al.  Dust in brown dwarfs - IV. Dust formation and driven turbulence on mesoscopic scales , 2004, astro-ph/0404272.

[13]  C. Helling,et al.  Dust in brown dwarfs. II. The coupled problem of dust formation and sedimentation , 2003 .

[14]  N. Wood,et al.  Results from a set of three-dimensional numerical experiments of a hot Jupiter atmosphere , 2017, 1704.00539.

[15]  M. Marley,et al.  PHOTOLYTIC HAZES IN THE ATMOSPHERE OF 51 ERI B , 2016, 1604.07388.

[16]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[17]  C. Helling,et al.  Dust in brown dwarfs and extra-solar planets , 2008, Astronomy & Astrophysics.

[18]  N. Wood,et al.  Using the UM dynamical cores to reproduce idealised 3-D flows , 2013, 1310.6041.

[19]  Leon D. Rotstayn,et al.  A physically based scheme for the treatment of stratiform clouds and precipitation in large‐scale models. I: Description and evaluation of the microphysical processes , 1997 .

[20]  C. Helling,et al.  Dust in brown dwarfs - III. Formation and structure of quasi-static cloud layers , 2004 .

[21]  Vivien Parmentier,et al.  TRANSITIONS IN THE CLOUD COMPOSITION OF HOT JUPITERS , 2016, 1602.03088.

[22]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[23]  Drake Deming,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2016, Nature.

[24]  Avi Shporer,et al.  STUDYING ATMOSPHERE-DOMINATED HOT JUPITER KEPLER PHASE CURVES: EVIDENCE THAT INHOMOGENEOUS ATMOSPHERIC REFLECTION IS COMMON , 2015, 1504.00498.

[25]  L. Polvani,et al.  EQUATORIAL SUPERROTATION ON TIDALLY LOCKED EXOPLANETS , 2011, 1103.3101.

[26]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[27]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[28]  2D models for dust-driven AGB star winds , 2006, astro-ph/0602371.

[29]  I. Baraffe,et al.  Advection of Potential Temperature in the Atmosphere of Irradiated Exoplanets: A Robust Mechanism to Explain Radius Inflation , 2017, 1704.05440.

[30]  T. Barman,et al.  Dust in brown dwarfs and extra-solar planets - III. Testing synthetic spectra on observations , 2011 .

[31]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[32]  J. Crank,et al.  A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[33]  James Manners,et al.  Observable Signatures of Wind-driven Chemistry with a Fully Consistent Three-dimensional Radiative Hydrodynamics Model of HD 209458b , 2018, 1802.09222.

[34]  Kevin Heng,et al.  Atmospheric circulation of tidally locked exoplanets: a suite of benchmark tests for dynamical solvers , 2010, 1010.1257.

[35]  Sergei N. Yurchenko,et al.  A variationally computed line list for hot NH3 , 2010 .

[36]  R. Akeson,et al.  The Mid-Infrared Spectrum of the Transiting Exoplanet HD 209458b , 2007, astro-ph/0702593.

[37]  W. Thi,et al.  Dust in brown dwarfs and extra-solar planets - I. Chemical composition and spectral appearance of quasi-static cloud layers , 2008, 0803.4315.

[38]  D. Juncher,et al.  Modelling the local and global cloud formation on HD 189733b , 2015, 1505.06576.

[39]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[40]  T. Louden,et al.  SPATIALLY RESOLVED EASTWARD WINDS AND ROTATION OF HD 189733b , 2015, 1511.03689.

[41]  H. Gail,et al.  Physics and Chemistry of Circumstellar Dust Shells , 2013 .

[42]  U. Jørgensen,et al.  Self-consistent atmosphere modeling with cloud formation for low-mass stars and exoplanets , 2017, 1708.06976.

[43]  Royal Observatory of Edinburgh,et al.  Consistent Simulations of Substellar Atmospheres and Nonequilibrium Dust Cloud Formation , 2008, 0801.3733.

[44]  Tristan Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002 .

[45]  R. Klein,et al.  Dust in brown dwarfs - I. Dust formation under turbulent conditions on microscopic scales , 2001 .

[46]  Sara Seager,et al.  INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE , 2013, 1309.7894.

[47]  Atmospheric dynamics on tidally locked Earth-like planets in the habitable zone of an M dwarf star , 2013, Proceedings of the International Astronomical Union.

[48]  Alain Lecavelier des Etangs,et al.  THE DEEP BLUE COLOR OF HD 189733b: ALBEDO MEASUREMENTS WITH HUBBLE SPACE TELESCOPE/SPACE TELESCOPE IMAGING SPECTROGRAPH AT VISIBLE WAVELENGTHS , 2013, 1307.3239.

[49]  P. J. Wheatley,et al.  Rayleigh scattering in the transmission spectrum of HAT-P-18b , 2016, 1611.06916.

[50]  A. Burrows,et al.  Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres , 1999 .

[51]  C. Helling,et al.  Modelling the formation of atmospheric dust in brown dwarfs and planetary atmospheres , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[52]  J. Manners,et al.  The effect of metallicity on the atmospheres of exoplanets with fully coupled 3D hydrodynamics, equilibrium chemistry, and radiative transfer (dataset) , 2018, 1801.01045.

[53]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[54]  J. Morse,et al.  A Comprehensive Study of Kepler Phase Curves and Secondary Eclipses: Temperatures and Albedos of Confirmed Kepler Giant Planets , 2014, 1404.4348.

[55]  D. Homeier,et al.  The UK Met Office global circulation model with a sophisticated radiation scheme applied to the hot Jupiter HD 209458b , 2016, 1608.08593.

[56]  I. Dobbs-Dixon,et al.  Dynamic mineral clouds on HD 189733b I. 3D RHD with kinetic, non-equilibrium cloud formation , 2016, 1603.09098.

[57]  J. Manners,et al.  Treatment of overlapping gaseous absorption with the correlated-k method in hot Jupiter and brown dwarf atmosphere models , 2016, 1610.01389.

[58]  J. Livingston,et al.  A CHARACTERISTIC TRANSMISSION SPECTRUM DOMINATED BY H2O APPLIES TO THE MAJORITY OF HST/WFC3 EXOPLANET OBSERVATIONS , 2015, 1512.00151.

[59]  N. Phillips,et al.  NUMERICAL INTEGRATION OF THE QUASI-GEOSTROPHIC EQUATIONS FOR BAROTROPIC AND SIMPLE BAROCLINIC FLOWS , 1953 .

[60]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[61]  K. Heng,et al.  Atmospheric Dynamics of Hot Exoplanets , 2014, 1407.4150.

[62]  D. Ehrenreich,et al.  Gran Telescopio Canarias OSIRIS transiting exoplanet atmospheric survey: detection of potassium in XO-2b from narrowband spectrophotometry , 2010, 1008.4795.

[63]  Gilles Chabrier,et al.  FINGERING CONVECTION AND CLOUDLESS MODELS FOR COOL BROWN DWARF ATMOSPHERES , 2015, 1504.03334.

[64]  David J Armstrong,et al.  Variability in the atmosphere of the hot giant planet HAT-P-7 b , 2016, Nature Astronomy.

[65]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[66]  S. Littlefair,et al.  Atmospheric Electrification in Dusty, Reactive Gases in the Solar System and Beyond , 2016, Surveys in Geophysics.

[67]  R. Jayawardhana,et al.  Making the Most of Kepler Photometry: Characterizing Exoplanets through Phase Curve Analysis , 2015 .

[68]  Jacob L. Bean,et al.  SPITZER PHASE CURVE CONSTRAINTS FOR WASP-43b AT 3.6 AND 4.5 μm , 2016, 1608.00056.

[69]  S. Aigrain,et al.  The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations , 2012, 1210.4163.

[70]  J. Manners,et al.  The mineral clouds on HD 209458b and HD 189733b , 2016, 1603.04022.

[71]  P. Hauschildt,et al.  Erratum: “Consistent Simulations of Substellar Atmospheres and Nonequilibrium Dust Cloud Formation” (ApJ, 675, L105 [2008]) , 2008 .

[72]  Curtis S. Cooper,et al.  Dynamic Meteorology at the Photosphere of HD 209458b , 2005, astro-ph/0502476.

[73]  Hannah R. Wakeford,et al.  Transmission spectral properties of clouds for hot Jupiter exoplanets , 2014, 1409.7594.

[74]  I. Dobbs-Dixon,et al.  Atmospheric Dynamics of Short-Period Extrasolar Gas Giant Planets. I. Dependence of Nightside Temperature on Opacity , 2007, 0704.3269.

[75]  Nikole K. Lewis,et al.  An ultrahot gas-giant exoplanet with a stratosphere , 2017, Nature.

[76]  C. Helling,et al.  Dust in brown dwarfs. V. Growth and evaporation of dirty dust grains , 2006 .

[77]  M. Diamantakis,et al.  An inherently mass‐conserving semi‐implicit semi‐Lagrangian discretization of the deep‐atmosphere global non‐hydrostatic equations , 2014 .

[78]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[79]  R. J. de Kok,et al.  ROTATION AND WINDS OF EXOPLANET HD 189733 b MEASURED WITH HIGH-DISPERSION TRANSMISSION SPECTROSCOPY , 2015, 1512.05175.

[80]  T. Evans,et al.  DETECTION OF H2O AND EVIDENCE FOR TiO/VO IN AN ULTRA-HOT EXOPLANET ATMOSPHERE , 2016, 1604.02310.

[81]  S. Seager,et al.  A NEW 24 μm PHASE CURVE FOR υ ANDROMEDAE b , 2010, 1008.0393.

[82]  K. Wood,et al.  Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets , 2016, 1604.03369.

[83]  W. Dorland,et al.  Plasma Physics and Controlled Fusion , 1984 .

[84]  Sergei N. Yurchenko,et al.  ExoMol: molecular line lists for exoplanet and other atmospheres , 2012 .

[85]  Shang-min Tsai,et al.  THREE-DIMENSIONAL STRUCTURES OF EQUATORIAL WAVES AND THE RESULTING SUPER-ROTATION IN THE ATMOSPHERE OF A TIDALLY LOCKED HOT JUPITER , 2014, 1405.0003.

[86]  K. Menou,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: A SHALLOW THREE-DIMENSIONAL MODEL , 2008, 0809.1671.

[87]  Kevin Heng,et al.  ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. III. GASEOUS C–H–O–N CHEMISTRY WITH NINE MOLECULES , 2016, 1603.05418.

[88]  B. Demory,et al.  Optical phase curves as diagnostics for aerosol composition in exoplanetary atmospheres , 2016, 1601.03050.

[89]  Eric Agol,et al.  Three-dimensional radiative-hydrodynamical simulations of the highly irradiated short-period exoplanet HD 189733b , 2012, 1211.1709.

[90]  Ahmed F. Al-Refaie,et al.  The ExoMol database: Molecular line lists for exoplanet and other hot atmospheres , 2016, 1603.05890.

[91]  R. J. de Kok,et al.  Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 μm , 2013, 1307.1133.