Single Crystals of Single-Walled Carbon Nanotubes Formed by Self-Assembly

We report the self-assembly of single crystals of single-walled carbon nanotubes (SWCNTs) using thermolysis of nano-patterned precursors. The synthesis of these perfectly ordered, single crystals of SWCNTs results in extended structures with dimension on the micrometer scale. Each crystal is composed of an ordered array of tubes with identical diameters and chirality, although these properties vary between crystals. The results show that SWCNTs can be produced as a perfect bulk material on the micrometer scale and point toward the synthesis of bulk macroscopic crystalline material.

[1]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[2]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[3]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[4]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[5]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[6]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[7]  J. Gimzewski,et al.  Parallel nanodevice fabrication using a combination of shadow mask and scanning probe methods , 1999 .

[8]  J. P. Zhang,et al.  Controlled production of aligned-nanotube bundles , 1997, Nature.

[9]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[10]  Martin Moskovits,et al.  Highly-ordered carbon nanotube arrays for electronics applications , 1999 .

[11]  H. Dai,et al.  Nanotubes as nanoprobes in scanning probe microscopy , 1996, Nature.

[12]  P. Bernier,et al.  Study of the symmetry of single-wall nanotubes by electron diffraction , 2000 .

[13]  R. Kuzuo,et al.  Electron Energy-Loss Spectra of Carbon Nanotubes , 1992 .

[14]  Miko Elwenspoek,et al.  Resistless patterning of sub-micron structures by evaporation through nanostencils , 2000 .

[15]  Robert P. H. Chang,et al.  A nanotube-based field-emission flat panel display , 1998 .

[16]  X. B. Zhang,et al.  Carbon nano-tubes; their formation process and observation by electron microscopy , 1993 .

[17]  J. M. Kim,et al.  Synthesis of uniformly distributed carbon nanotubes on a large area of Si substrates by thermal chemical vapor deposition , 1999 .

[18]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[19]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[20]  Kirkland,et al.  Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes , 2000, Science.

[21]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[22]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[23]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[24]  P Kim,et al.  ナノチューブナノピンセット | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1999 .

[25]  G. Dresselhaus,et al.  Size Effects in Carbon Nanotubes , 1998 .